What if you had two ratios that you knew were equal to one another like
Watch This
CK12 Foundation: 0311S Proportions (H264)
Guidance
When two ratios are equal to each other, we call it a proportion. For example, the equation
(Check this yourself to make sure!)
We often use proportions in science and business—for example, when scaling up the size of something. We generally use them to solve for an unknown, so we use algebra and label the unknown variable
Example A
A small fast food chain operates 60 stores and makes $1.2 million profit every year. How much profit would the chain make if it operated 250 stores?
Solution
First, we need to write a
ratio:
the ratio of profit to number of stores. That would be
Now we want to know how much profit 250 stores would make. If we label that profit
Since we’re assuming the profit is proportional to the number of stores, the ratios are equal and our proportion is
(Note that we can drop the units – not because they are the same in the numerator and denominator, but because they are the same on both sides of the equation.)
To solve this equation, first we simplify the lefthand fraction to get
If the chain operated 250 stores, the annual profit would be 5 million dollars.
Solve Proportions Using Cross Products
One neat way to simplify proportions is to cross multiply. Consider the following proportion:
If we want to eliminate the fractions, we could multiply both sides by 4 and then multiply both sides by 5. But suppose we just do both at once?
Now comparing this to the proportion we started with, we see that the denominator from the left hand side ends up being multiplied by the numerator on the right hand side. You can also see that the denominator from the right hand side ends up multiplying the numerator on the left hand side.
In effect the two denominators have multiplied across the equal sign:
becomes
This movement of denominators is known as cross multiplying . It is extremely useful in solving proportions, especially when the unknown variable is in the denominator.
Example B
Solve this proportion for
Solution
Cross multiply to get
Example C
Solve the following proportion for
Solution
Cross multiply to get
Solve RealWorld Problems Using Proportions
Example D
A crosscountry train travels at a steady speed. It covers 15 miles in 20 minutes. How far will it travel in 7 hours assuming it continues at the same speed?
Solution
We’ve done speed problems before; remember that speed is just the ratio
To set up a proportion, we first have to get the units the same. 20 minutes is
Cross multiplying gives us
The train will travel 315 miles in 7 hours.
Example E
In the United Kingdom, Alzheimer’s disease is said to affect one in fifty people over 65 years of age. If approximately 250000 people over 65 are affected in the UK, how many people over 65 are there in total?
Solution
The fixed ratio in this case is the 1 person in 50. The unknown quantity
Our proportion is
Cross multiplying, we get
There are approximately 12.5 million people over the age of 65 in the UK.
Watch this video for help with the Examples above.
Vocabulary
 A ratio is a way to compare two numbers, measurements or quantities by dividing one number by the other and expressing the answer as a fraction.
 A proportion is formed when two ratios are set equal to each other.

Cross multiplication
is useful for solving equations in the form of proportions. To cross multiply, multiply the bottom of each ratio by the top of the other ratio and set them equal. For instance, cross multiplying
results in
11×3=5x .  Scale is a proportion that relates map distance to real life distance.
Guided Practice
A chemical company makes up batches of copper sulfate solution by adding 250 kg of copper sulfate powder to 1000 liters of water. A laboratory chemist wants to make a solution of identical concentration, but only needs 350 mL (0.35 liters) of solution. How much copper sulfate powder should the chemist add to the water?
Solution
The ratio of powder to water in the first case, in kilograms per liter, is
To solve for
The mass of copper sulfate that the chemist should add is 0.0875 kg, or 87.5 grams.
Explore More
Solve the following proportions.

136=5x 
1.257=3.6x 
619=x11 
1x=0.015 
3004=x99 
2.759=x(29) 
1.34=x1.3 
0.11.01=1.9x 
536=x30 
103=6.9x