<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Repeating Decimals

Identify repeating decimals by dividing the numerator of a fraction by the denominator.

Atoms Practice
Estimated4 minsto complete
%
Progress
Practice Repeating Decimals
Practice
Progress
Estimated4 minsto complete
%
Practice Now
Turn In
Repeating Decimals
License: CC BY-NC 3.0

Jose has 10 bars of chocolate that he needs to give to 3 of his friends. How many bars of chocolate does each friend receive?

In this concept, you will learn to write fractions and mixed numbers as repeating decimals.

Writing Fractions and Mixed Numbers as Repeating Decimals

A terminating decimal is a decimal number that does not go on forever. The word “terminate” means to end. Most of the fractions you have been working with are terminating decimals.

Here is a fraction with a terminating decimal.

\begin{align*}\frac{1}{4}\end{align*}

Divide 1 by 4 to find the decimal value.

\begin{align*}\begin{array}{rcl} && \overset{ \quad 0.25}{4 \overline{ ) {1.00 \;}}}\\ && \ \ \ \underline{-8}\\ && \quad \ \ \ 20 \\ && \quad \underline{ -20} \\ && \qquad 0 \end{array}\end{align*}

You use zero placeholders, but ultimately, the decimal will divide evenly.

A decimal that does not end and repeats the same number or numbers over and over again is called a repeating decimal. When you divide the numerator by the denominator and keep ending up with the same number, you might have a repeating decimal.

Convert \begin{align*}\frac{2}{3}\end{align*} to a decimal.

First, this does not have a base ten denominator. Divide the numerator by the denominator.

\begin{align*}\begin{array}{rcl} && \overset{ \ \ 0.666}{4 \overline{ ) {2.000 }}}\\ && \underline{ -\; 18}\\ && \quad \ \ 20 \\ && \ \ \ \underline{ -18 }\\ && \qquad 20\\ && \quad \ \underline{ -18 }\\ && \qquad \ \ 2 \end{array}\end{align*}

The same remainder keeps showing up and the quotient becomes a series of 6’s. It does not matter if you keep adding zero placeholders. A repeating decimal is indicated by adding a line over the last digit or series of digits in the quotient that repeats itself.

The decimal value of \begin{align*}\frac{2}{3}\end{align*} is \begin{align*}0.\bar{6}\end{align*} .

Examples

Example 1

Earlier, you were given a problem about Jose and his chocolate bars.

Jose wants to give 10 chocolate bars to 3 of his friends. Divide 10 by 3 to find how many chocolate bar each friend receives.

Divide 10 by 3.

\begin{align*}& \overset{ \ \ 3.333}{3 \overline{ ) {10.000 \;}}}\\ & \underline{ \; \;\; -9}\\ & \quad 10 \\ & \underline{ \; \; \;-9}\\ & \quad 10 \\ & \underline{ \; \; \;-9}\\ & \quad 10 \\ & \ -9 \\ & \overline{ \; \; \; \; \;1}\end{align*}

The answer is a repeating decimal \begin{align*}3. \bar{3}\end{align*}.

Jose can give each friend \begin{align*}3.\bar{3}\end{align*} bars of chocolate.

Example 2

Is \begin{align*}\frac{4}{9}\end{align*} a repeating decimal or a terminating decimal?

Convert the fraction to a decimal. Divide 4 by 9.

\begin{align*}\begin{array}{rcl} && \overset{ \ \ 0.4444}{9 \overline{ ) {4.0000 \;}}}\\ && \underline{- \; 36}\\ && \quad \ \ 40 \\ && \ \ \ \underline{-36}\\ && \qquad 40\\ && \quad\ \underline{-36} \\ && \qquad \ \ 40\\ && \quad \ \ \ \underline{-36} \\ && \qquad \ \ \ 4 \end{array}\end{align*} 

The same remainder keeps showing up and the quotient will go on and on as a series of 4s.

The decimal value of \begin{align*}\frac{4}{9}\end{align*} is a repeating decimal, \begin{align*}0.\bar{4}\end{align*}.

Example 3

Determine if the fraction is a repeating or terminating decimal.

\begin{align*}\frac{1}{3}\end{align*}

Convert the fraction to a decimal. Divide 1 by 3.

\begin{align*}\begin{array}{rcl} && \overset{ \ \ 0.3333}{3 \overline{ ) {1.0000 \;}}}\\ && \ \ \ \underline{ -9}\\ && \quad \ \ 10 \\ && \quad \ \underline{-9} \\ && \qquad 10\\ && \quad \ \ \ \underline{ -9} \\ && \qquad \ \ 10\\ && \qquad \ \underline{ -9} \\ && \qquad \quad 1 \end{array}\end{align*}

The decimal value of \begin{align*}\frac{1}{3}\end{align*} is a repeating decimal, \begin{align*}0. \bar{3}\end{align*}.

Example 4

Determine if the fraction is a repeating or terminating decimal.

\begin{align*}\frac{1}{8}\end{align*}

Convert the fraction to a decimal. Divide 1 by 8.

\begin{align*}\begin{array}{rcl} && \overset{ \ \ 0.125}{8 \overline{ ) {1.000 \;}}}\\ && \ \ \underline{ \;-8}\\ &&\quad \ \ 20 \\ && \ \ \ \underline{ -16} \\ && \qquad 40\\ && \quad \ \underline{ -40} \\ && \qquad \ \ 0 \end{array}\end{align*}

The decimal value of \begin{align*}\frac{1}{8}\end{align*} is a terminating decimal, 0.125.

Example 5

Determine if the fraction is a repeating or terminating decimal.

\begin{align*}5 \frac{1}{2}\end{align*}

First, convert the fraction part to a decimal.

\begin{align*}\frac{1}{2} = 0.5\end{align*}

Then, place the whole number to the left of the decimal point.

\begin{align*}5 \frac{1}{2}=5.5\end{align*}

The decimal value of \begin{align*}5 \frac{1}{2}\end{align*} is a terminating decimal, 5.5.

Review

Determine if the fractions are repeating or terminating decimals.

  1. \begin{align*}\frac{14}{3}\end{align*}
  2. \begin{align*}\frac{34}{9}\end{align*}
  3. \begin{align*}\frac{23}{3}\end{align*}
  4. \begin{align*}\frac{17}{4}\end{align*}
  5. \begin{align*}\frac{19}{6}\end{align*}
  6. \begin{align*}\frac{12}{5}\end{align*}
  7. \begin{align*}3 \frac{1}{3}\end{align*}
  8. \begin{align*}8 \frac{1}{2}\end{align*}
  9. \begin{align*}9 \frac{2}{3}\end{align*}
  10. \begin{align*}11 \frac{4}{5}\end{align*}
  11. \begin{align*}16 \frac{1}{4}\end{align*}
  12. \begin{align*}\frac{44}{3}\end{align*}
  13. \begin{align*}\frac{66}{7}\end{align*}
  14. \begin{align*}\frac{18}{4}\end{align*}
  15. \begin{align*}\frac{74}{7}\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 5.21.

Resources

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Repeating Decimal

A repeating decimal is a decimal number that ends with a group of digits that repeat indefinitely. 1.666... and 0.9898... are examples of repeating decimals.

Terminating Decimal

A terminating decimal is a decimal number that ends. The decimal number 0.25 is an example of a terminating decimal.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Repeating Decimals.
Please wait...
Please wait...