<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Sums of Mixed Numbers with Renaming

Adding equivalent improper fractions with LCD

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Sums of Mixed Numbers with Renaming
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Sums of Mixed Numbers with Renaming

Let's Think About It

License: CC BY-NC 3.0

Terry is \begin{align*}6 \frac{1}{4}\end{align*}614 feet tall. Five years ago, she was \begin{align*}1\frac{1}{3}\end{align*}113 feet shorter. How tall was Terry five years ago?

In this concept, you will learn how to subtract mixed number by borrowing and renaming.

Guidance

To rename a fraction means to take the fractions and write an equivalent fraction. Here is an example.

\begin{align*}\frac{1}{3}=\frac{3}{9}\end{align*}13=39

Sometimes when you subtract mixed numbers, you must rename the mixed numbers in a different way. Here is an example.

\begin{align*}& \qquad 6\\ & \underline{- \quad 4\frac{5}{6}\;}\end{align*}6456

To subtract a fraction from a whole number, rename the whole number to a mixed number. It is similar to borrowing when subtracting. Remember that 1 can be written as a fraction.

\begin{align*}1 = \frac {2}{2} \ \text{or} \ \frac {3}{3} \ \text{or} \ \frac {4}{4} \text{. . .}\end{align*}1=22 or 33 or 44. . .

Rename 6 into a mixed number. Borrow 1 from the whole number and rename it into a fraction with a denominator of 6.

\begin{align*}6=5\frac{6}{6}\end{align*}6=566

Now rewrite the problem with 6 as a mixed number.

\begin{align*}& \quad \ \ 5\frac{6}{6}\\ & \underline{- \quad 4\frac{5}{6}\;}\\ \end{align*}  566456

Then, subtract the mixed numbers.

\begin{align*}& \quad \ \ 5\frac{6}{6}\\ & \underline{- \quad 4\frac{5}{6}\;}\\ & \quad \ \ 1\frac{1}{6}\end{align*}  566456  116

The difference is \begin{align*}1\frac{1}{6}\end{align*}116.

Sometimes you will also have to rename a mixed number if the fraction being subtracted is larger than the first fraction. Here is a subtraction problem with mixed numbers. 

\begin{align*}& \quad \ \ 6\frac{1}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\end{align*}  619349

This problem involves subtracting a larger fraction, four-ninths, from a smaller fraction, one-ninths. To make this work, rename the first mixed number by borrowing from the whole number. Remember to add the fraction to the renamed mixed number. 

\begin{align*}6 &= 5\frac{9}{9}\\ 5\frac{9}{9}+\frac{1}{9} &= 5\frac{10}{9}\end{align*}6599+19=599=5109

Rewrite the problem with the new mixed number.

\begin{align*}& \quad \ \ 5\frac{10}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\\ \end{align*}  5109349

Then, subtract the mixed numbers.

\begin{align*}& \quad \ \ 5\frac{10}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\\ & \quad \ \ 2\frac{6}{9}\end{align*}  5109349  269

Next, simplify the fraction.

\begin{align*}2\frac{6}{9}=2\frac{2}{3}\end{align*}269=223

 The difference is \begin{align*}2\frac{2}{3}\end{align*}223.

Guided Practice

Subtract the mixed numbers.

\begin{align*}8\frac{1}{3} - 2\frac{3}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}813234=

First, rename the fractions so they they have a common denominator of 12.

 \begin{align*}8\frac{4}{12} - 2\frac{9}{12}= 7 \frac{16}{12} - 2 \frac{9}{12}\end{align*}84122912=716122912

Then, rename \begin{align*}8\frac{4}{12}\end{align*}8412. You cannot subtract \begin{align*}\frac{9}{12}\end{align*}912 from \begin{align*}\frac{4}{12}\end{align*}412Borrow 1 from the whole number 8 and rename the mixed number. 

 \begin{align*}8 \frac{4}{12} = 7 \frac {12}{12} + \frac {4}{12}= 7 \frac{16}{12}\end{align*}8412=71212+412=71612

Next, rewrite the problem and subtract the mixed numbers.

\begin{align*} 7 \frac{16}{12} - 2 \frac{9}{12} = 5\frac{7}{12}\end{align*}716122912=5712

The difference is \begin{align*}5\frac{7}{12}\end{align*}5712.

Examples

Subtract the mixed numbers. Answer in simplest form.

Example 1

\begin{align*}7-2\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}7215=

First, rename the whole number as a mixed number with a denominator of 5.  

\begin{align*}7 = 6 \frac{5}{5} \\ \end{align*}7=655

\begin{align*}7-2\frac{1}{5} = 6 \frac{5}{5}-2\frac{1}{5}\end{align*}7215=655215

Then, subtract the mixed numbers.

 \begin{align*}6 \frac{5}{5}-2\frac{1}{5} = 4\frac{4}{5}\end{align*}

The difference is \begin{align*}4 \frac{4}{5}\end{align*}.

Example 2

Rename 8 as an equivalent mixed number.

Borrow one from the whole number and rename it into a fraction.

 \begin{align*}8 = 7\frac{8}{8}\end{align*}

8 is equivalent to \begin{align*}7 \frac{8}{8}\end{align*}.

Example 3

\begin{align*}9\frac{1}{4}-3\frac{3}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename \begin{align*}9 \frac{1}{4}\end{align*}. Borrow 1 from 9 and add it to the fraction.

\begin{align*}9 \frac{1}{4} = 8\frac{5}{4}\end{align*}

\begin{align*}9\frac{1}{4}-3\frac{3}{4}=8\frac{5}{4}-3\frac{3}{4}\end{align*}

Then, subtract the mixed numbers. 

\begin{align*}8\frac{5}{4}-3\frac{3}{4}=5 \frac{2}{4}\end{align*}

Next, simplify the fraction.

 \begin{align*}5 \frac{2}{4}=5 \frac{1}{2}\end{align*}

The difference is \begin{align*}5 \frac{1}{2}\end{align*}.

Follow Up

License: CC BY-NC 3.0

Remember Terry five years ago?

Terry is \begin{align*}6\frac{1}{4}\end{align*} feet tall, but was \begin{align*}1 \frac{1}{3}\end{align*} feet shorter five years ago. Subtract to find Terry's height five years ago. 

\begin{align*}6 \frac{1}{4} - 1 \frac{1}{3} = \underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename the fractions so they have a common denominator. 

\begin{align*}6 \frac{1}{4} - 1 \frac{1}{3} =6 \frac{3}{12} - 1 \frac{4}{12}\end{align*}

Then, rename \begin{align*}6 \frac{3}{12}\end{align*}. Borrow 1 from 6 and add it to the fraction.

\begin{align*}6 \frac {3}{12} = 5 \frac {15}{12}\end{align*}

Next, subtract the mixed numbers.

\begin{align*}5 \frac{15}{12} - 1 \frac{4}{12} = 4 \frac{11}{12}\end{align*}  

Five years ago, Terry was \begin{align*}4\frac{11}{12}\end{align*} feet tall. 

Video Review

Explore More

Rename each whole number as a mixed number with a fraction terms of sixths.

1. 4

2. 5

3. 6

4. 10

5. 9

6. 12

Find each difference. Rename mixed numbers as needed. Answer in simplest form.

7. \begin{align*}3-2\frac{1}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

8. \begin{align*}7-2\frac{2}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

9. \begin{align*}10-4\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

10. \begin{align*}8-2\frac{4}{9}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

11. \begin{align*}14-6\frac{2}{3}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

12. \begin{align*}15-6\frac{2}{10}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

13. \begin{align*}11-4\frac{1}{7}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

14. \begin{align*}18-16\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

15. \begin{align*}20-15\frac{2}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

16. \begin{align*}7\frac{1}{6}-4\frac{3}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

17. \begin{align*}9\frac{1}{5}-3\frac{4}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

18. \begin{align*}10\frac{1}{8}-4\frac{3}{8}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

19. \begin{align*}15\frac{1}{9}-8\frac{4}{9}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

20. \begin{align*}17\frac{4}{7}-9\frac{6}{7}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 6.13. 

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More

Vocabulary

Equivalent

Equivalent means equal in value or meaning.

Image Attributions

  1. [1]^ License: CC BY-NC 3.0
  2. [2]^ License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Sums of Mixed Numbers with Renaming.
Please wait...
Please wait...