<meta http-equiv="refresh" content="1; url=/nojavascript/"> Prokaryotic Gene Regulation ( Read ) | Biology | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Prokaryotic Gene Regulation

%
Progress
Practice Prokaryotic Gene Regulation
Practice
Progress
%
Practice Now
Prokaryotic Gene Regulation

On or off?

When it comes to genes, that is an important question. And if you're a single-celled organism like a bacterium, conserving energy by not producing unnecessary proteins is very important.

Prokaryotic Gene Regulation

Transcription is regulated differently in prokaryotes and eukaryotes. In general, prokaryotic regulation is simpler than eukaryotic regulation.

The Role of Operons

Regulation of transcription in prokaryotes typically involves operons. An operon is a region of DNA that consists of one or more genes that encode the proteins needed for a specific function. The operon also includes a promoter and an operator. The operator is a region of the operon where regulatory proteins bind. It is located near the promoter and helps regulate transcription of the operon genes.

The Lac Operon

A well-known example of operon regulation involves the lac operon in E. coli bacteria (see Figure below and the video at the link below). The lac operon consists of a promoter, an operator, and three genes that encode the enzymes needed to digest lactose, the sugar found in milk. The lac operon is regulated by lactose in the environment. http://www.youtube.com/watch?v=oBwtxdI1zvk

  • When lactose is absent, a repressor protein binds to the operator. The protein blocks the binding of RNA polymerase to the promoter. As a result, the lac genes are not expressed.
  • When lactose is present, the repressor protein does not bind to the operator. This allows RNA polymerase to bind to the promoter and begin transcription. As a result, the lac genes are expressed, and lactose is digested.

Why might it be beneficial to express genes only when they are needed? (Hint: synthesizing proteins requires energy and materials.)

The three genes of the lac operon are lacZ, lacY, and lacA. They encode proteins needed to digest lactose. The genes are expressed only in the presence of lactose.

Summary

  • Regulation of transcription in prokaryotes typically involves an operon, such as the lac operon in E. coli .
  • The lac operon is regulated by proteins that behave differently depending on whether lactose is present or absent.

Practice I

Use this resource to answer the questions that follow.

  1. How do bacteria break large sugars into smaller ones?
  2. What is the role of lactose in gene regulation?
  3. What happens when lactose is present? Or absent?
  4. What is the operator?
  5. What does "operon" refer to?

Practice II

Gene Machine: The Lac Operon at http://phet.colorado.edu/en/simulation/gene-machine-lac-operon .

Review

1. Why might it be beneficial to express genes only when they are needed?

2. Draw a diagram to show how the lac operon is regulated.

Vocabulary

lac operon

lac operon

Prokaryotic operon consisting of a promoter, an operator, and three genes that encode the enzymes needed to digest lactose.
operator

operator

A region of an operon where regulatory proteins bind.
operon

operon

Region of prokaryotic DNA that consists of a promoter, an operator, and one or more genes that encode proteins needed for a specific function.
promoter

promoter

Region of a gene where a RNA polymerase binds to initiate transcription of the gene.
repressor

repressor

Proteins that bind to non-coding sequences on DNA that are close to the promoter region; impedes RNA polymerase's progress along the strand.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Prokaryotic Gene Regulation.

Reviews

Please wait...
Please wait...

Original text