<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

9.10: Lines of Numbers Extra for Experts

Difficulty Level: At Grade Created by: CK-12

Extras for Experts: Lines of Numbers - Identify Patterns and Reason Proportionally

Solutions

\begin{align*}1. \!\\ {\;} \quad \text{a}.\ \text{The}\ 50^{\text{th}}\ \text{number is}\ 1: \!\\ {\;} \qquad \ 50 \div 6\ \text{is}\ 8\ \text{with} \ 2 \ \text{left over and}\ 8 \times 6 = 48.\ \text{So the}\ 48^{\text{th}}\ \text{number is}\ 3,\ \text{the last number in} \!\\ {\;} \qquad \ \text{the set. The}\ 50^{\text{th}}\ \text{number is}\ 2,\ \text{the second number in the set}. \!\\ {\;} \quad \text{b}.\ \text{The}\ 100^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad \ 100 \div 6 = 16\ \text{with} \ 4 \ \text{left over and}\ 6 \times 16 = 96.\ \text{So the}\ 96^{\text{th}}\ \text{number is}\ 3.\!\\ {\;} \qquad \ \text{Then the}\ 100^{\text{th}}\ \text{number is}\ 3.\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 100\ \text{numbers is}\ 232: \!\\ {\;} \qquad \ \text{The sum of one set of}\ 1,\ 2,\ 2,\ 3,\ 3,\ \text{and}\ 3\ \text{is}\ 14.\ \text{From the answer to question b,\ we know that} \!\\ {\;} \qquad \ 16\ \text{sets of six numbers ends with}\ 96.\ \text{The sum of the first 96 numbers is} \!\\ {\;} \qquad \ 16 \times 14,\ \text{or}\ 224.\ \text{The four left over numbers are}\ 1,\ 2,\ 2,\ \text{and}\ 3,\ \text{and their sum is}\ 8.\ \text{So the} \!\\ {\;} \qquad \ \text{sum of the first}\ 100\ \text{numbers in the pattern is}\ 224 + 8,\ \text{or}\ 232.\!\\ 2. \!\\ {\;} \quad \text{a}.\ \text{The}\ 70^{\text{th}}\ \text{number is}\ 4: \!\\ {\;} \qquad 70 \div 4\ \text{is}\ 17\ \text{with two left over and}\ 4 \times 17 = 68.\ \text{So the}\ 68^{\text{th}}\ \text{number is}\ 6,\ \text{the last number} \!\\ {\;} \qquad \text{on the set. The}\ 70^{\text{th}}\ \text{number is}\ 4,\ \text{the second number in the set}. \!\\ {\;} \quad \text{b}.\ \text{The}\ 125^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad 125 \div 4 = 31\ \text{with one left over and}\ 4 \times 31 = 124.\ \text{So the}\ 124^{\text{th}}\ \text{number is}\ 6. \!\\ {\;} \qquad \text{The}\ 125^{\text{th}}\ \text{number will be}\ 3.\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 125\ \text{numbers is}\ 561:\!\\ {\;} \qquad \text{The sum of one set of}\ 3,\ 4,\ 5,\ \text{and}\ 6\ \text{is}\ 18.\ \text{From the answer to question b,\ we know that}\ 31 \!\\ {\;} \qquad \text{sets of three numbers ends with}\ 124.\ \text{The sum of the first}\ 124\ \text{numbers is}\ 18 \times 31,\!\\ {\;} \qquad \text{or}\ 558.\ \text{The left over numbers is}\ 3. \ \text{So the sum of the first}\ 125\ \text{numbers in the pattern is}\!\\ {\;} \qquad 558 + 3,\ \text{or}\ 561.\end{align*}

\begin{align*}3. \!\\ {\;} \quad \text{a}.\ \text{The}\ 67^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad \ 67 \div 5 \ \text{is}\ 13\ \text{with two left over and}\ 5 \times 13 = 65.\ \text{So the}\ 65^{\text{th}}\ \text{number is}\ 9,\ \text{the last number}\!\\ {\;} \qquad \ \text{in the set. The}\ 66^{\text{th}}\ \text{number is}\ 1,\ \text{and the}\ 67^{\text{th}}\ \text{is}\ 3. \!\\ {\;} \quad \text{b}.\ \text{The}\ 129^{\text{th}}\ \text{number is}\ 7: \!\\ {\;} \qquad \ 129 \div 5 = 25 \ \text{with} \ 4 \ \text{left over and}\ 5 \times 25 = 125.\ \text{So the}\ 125^{\text{th}}\ \text{number is}\ 7. \!\\ {\;} \qquad \ \text{The}\ 129^{\text{th}}\ \text{is}\ 7,\ \text{the fourth number in the set.}\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 129 \ \text{numbers is}\ 641: \!\\ {\;} \qquad \text{The sum of one set of}\ 1,\ 3,\ 5,\ 7,\ \text{and}\ 9\ \text{is}\ 25.\ \text{From the answer to question b, we know that}\!\\ {\;} \qquad 25\ \text{sets of four numbers ends with}\ 125.\ \text{The sum of the first}\ 125\ \text{numbers is}\!\\ {\;} \qquad 25 \times 25,\ \text{or}\ 625.\ \text{The four left over numbers are}\ 1,\ 3,\ 5, \ \text{and}\ 7,\ \text{and their sum is}\ 16.\ \text{So the} \!\\ {\;} \qquad \text{sum of the first}\ 129\ \text{numbers in the pattern is}\ 625 + 16,\ \text{or}\ 641.\end{align*}

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Algebra-Explorations-K-7.9.10