<meta http-equiv="refresh" content="1; url=/nojavascript/"> Lines of Numbers Extra for Experts | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: Algebra Explorations, Pre-K through Grade 7 Go to the latest version.

8.10: Lines of Numbers Extra for Experts

Created by: CK-12
 0  0  0

Extras for Experts: Lines of Numbers - Identify Patterns and Reason Proportionally

Solutions

1. \!\\{\;}  \quad \text{a}.\ \text{The}\ 50^{\text{th}}\ \text{number is}\ 1: \!\\ {\;}  \qquad \ 50 \div 6\ \text{is}\ 8\ \text{with} \ 2 \ \text{left over and}\ 8 \times 6 = 48.\ \text{So the}\ 48^{\text{th}}\ \text{number is}\ 3,\ \text{the last number in} \!\\{\;}  \qquad \ \text{the set. The}\ 50^{\text{th}}\ \text{number is}\ 2,\ \text{the second number in the set}. \!\\{\;}  \quad \text{b}.\  \text{The}\ 100^{\text{th}}\ \text{number is}\ 3: \!\\{\;}  \qquad \ 100 \div 6 = 16\ \text{with} \ 4 \ \text{left over and}\ 6 \times 16 = 96.\ \text{So the}\ 96^{\text{th}}\ \text{number is}\ 3.\!\\{\;}  \qquad \ \text{Then the}\ 100^{\text{th}}\ \text{number is}\ 3.\!\\{\;}  \quad \text{c}.\ \text{The sum of the first}\ 100\ \text{numbers is}\ 232: \!\\{\;}  \qquad \ \text{The sum of one set of}\ 1,\ 2,\ 2,\ 3,\ 3,\ \text{and}\ 3\ \text{is}\ 14.\ \text{From the answer to question b,\ we know that} \!\\{\;}  \qquad \ 16\ \text{sets of six numbers ends with}\ 96.\ \text{The sum of the first 96 numbers is} \!\\{\;}  \qquad \ 16 \times 14,\ \text{or}\ 224.\ \text{The four left over numbers are}\ 1,\ 2,\ 2,\ \text{and}\ 3,\ \text{and their sum is}\ 8.\ \text{So the} \!\\{\;}  \qquad \ \text{sum of the first}\ 100\ \text{numbers in the pattern is}\ 224 + 8,\ \text{or}\ 232.\!\\2. \!\\{\;}  \quad \text{a}.\ \text{The}\ 70^{\text{th}}\ \text{number is}\ 4: \!\\ {\;}  \qquad 70 \div 4\ \text{is}\ 17\ \text{with two left over and}\ 4 \times 17 = 68.\ \text{So the}\ 68^{\text{th}}\ \text{number is}\ 6,\ \text{the last number} \!\\{\;}  \qquad \text{on the set. The}\ 70^{\text{th}}\ \text{number is}\ 4,\ \text{the second number in the set}. \!\\{\;}  \quad \text{b}.\ \text{The}\ 125^{\text{th}}\ \text{number is}\ 3: \!\\ {\;}  \qquad 125 \div 4 = 31\ \text{with one left over and}\ 4 \times 31 = 124.\ \text{So the}\ 124^{\text{th}}\ \text{number is}\ 6. \!\\ {\;}  \qquad \text{The}\ 125^{\text{th}}\ \text{number will be}\ 3.\!\\{\;}  \quad \text{c}.\ \text{The sum of the first}\ 125\ \text{numbers is}\ 561:\!\\ {\;}  \qquad \text{The sum of one set of}\ 3,\ 4,\ 5,\ \text{and}\ 6\ \text{is}\ 18.\ \text{From the answer to question b,\ we know that}\ 31 \!\\{\;}  \qquad \text{sets of three numbers ends with}\ 124.\ \text{The sum of the first}\ 124\ \text{numbers is}\ 18 \times 31,\!\\{\;}  \qquad \text{or}\ 558.\ \text{The left over numbers is}\ 3. \ \text{So the sum of the first}\ 125\ \text{numbers in the pattern is}\!\\{\;}  \qquad 558 + 3,\ \text{or}\ 561.

3. \!\\{\;}  \quad \text{a}.\ \text{The}\ 67^{\text{th}}\ \text{number is}\ 3: \!\\{\;}  \qquad \ 67 \div 5 \ \text{is}\ 13\ \text{with two left over and}\ 5 \times 13 = 65.\ \text{So the}\ 65^{\text{th}}\ \text{number is}\ 9,\ \text{the last number}\!\\{\;}  \qquad \ \text{in the set. The}\ 66^{\text{th}}\ \text{number is}\ 1,\ \text{and the}\ 67^{\text{th}}\ \text{is}\ 3. \!\\{\;}  \quad \text{b}.\ \text{The}\ 129^{\text{th}}\ \text{number is}\ 7: \!\\{\;}  \qquad \ 129 \div 5 = 25 \ \text{with} \ 4 \ \text{left over and}\ 5 \times 25 = 125.\ \text{So the}\ 125^{\text{th}}\ \text{number is}\ 7. \!\\ {\;}  \qquad \ \text{The}\ 129^{\text{th}}\ \text{is}\ 7,\ \text{the fourth number in the set.}\!\\{\;}  \quad \text{c}.\ \text{The sum of the first}\ 129 \ \text{numbers is}\ 641: \!\\ {\;}  \qquad \text{The sum of one set of}\ 1,\ 3,\ 5,\ 7,\ \text{and}\ 9\ \text{is}\ 25.\ \text{From the answer to question b, we know that}\!\\{\;}  \qquad 25\ \text{sets of four numbers ends with}\ 125.\ \text{The sum of the first}\ 125\ \text{numbers is}\!\\{\;}  \qquad 25 \times 25,\ \text{or}\ 625.\ \text{The four left over numbers are}\ 1,\ 3,\ 5, \ \text{and}\ 7,\ \text{and their sum is}\ 16.\ \text{So the} \!\\{\;}  \qquad \text{sum of the first}\ 129\ \text{numbers in the pattern is}\ 625 + 16,\ \text{or}\ 641.

Image Attributions

Files can only be attached to the latest version of None

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Algebra-Explorations-K-7.9.10
ShareThis Copy and Paste

Original text