<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

9.10: Lines of Numbers Extra for Experts

Difficulty Level: At Grade Created by: CK-12

Extras for Experts: Lines of Numbers - Identify Patterns and Reason Proportionally

Solutions

\begin{align*}1. \!\\ {\;} \quad \text{a}.\ \text{The}\ 50^{\text{th}}\ \text{number is}\ 1: \!\\ {\;} \qquad \ 50 \div 6\ \text{is}\ 8\ \text{with} \ 2 \ \text{left over and}\ 8 \times 6 = 48.\ \text{So the}\ 48^{\text{th}}\ \text{number is}\ 3,\ \text{the last number in} \!\\ {\;} \qquad \ \text{the set. The}\ 50^{\text{th}}\ \text{number is}\ 2,\ \text{the second number in the set}. \!\\ {\;} \quad \text{b}.\ \text{The}\ 100^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad \ 100 \div 6 = 16\ \text{with} \ 4 \ \text{left over and}\ 6 \times 16 = 96.\ \text{So the}\ 96^{\text{th}}\ \text{number is}\ 3.\!\\ {\;} \qquad \ \text{Then the}\ 100^{\text{th}}\ \text{number is}\ 3.\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 100\ \text{numbers is}\ 232: \!\\ {\;} \qquad \ \text{The sum of one set of}\ 1,\ 2,\ 2,\ 3,\ 3,\ \text{and}\ 3\ \text{is}\ 14.\ \text{From the answer to question b,\ we know that} \!\\ {\;} \qquad \ 16\ \text{sets of six numbers ends with}\ 96.\ \text{The sum of the first 96 numbers is} \!\\ {\;} \qquad \ 16 \times 14,\ \text{or}\ 224.\ \text{The four left over numbers are}\ 1,\ 2,\ 2,\ \text{and}\ 3,\ \text{and their sum is}\ 8.\ \text{So the} \!\\ {\;} \qquad \ \text{sum of the first}\ 100\ \text{numbers in the pattern is}\ 224 + 8,\ \text{or}\ 232.\!\\ 2. \!\\ {\;} \quad \text{a}.\ \text{The}\ 70^{\text{th}}\ \text{number is}\ 4: \!\\ {\;} \qquad 70 \div 4\ \text{is}\ 17\ \text{with two left over and}\ 4 \times 17 = 68.\ \text{So the}\ 68^{\text{th}}\ \text{number is}\ 6,\ \text{the last number} \!\\ {\;} \qquad \text{on the set. The}\ 70^{\text{th}}\ \text{number is}\ 4,\ \text{the second number in the set}. \!\\ {\;} \quad \text{b}.\ \text{The}\ 125^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad 125 \div 4 = 31\ \text{with one left over and}\ 4 \times 31 = 124.\ \text{So the}\ 124^{\text{th}}\ \text{number is}\ 6. \!\\ {\;} \qquad \text{The}\ 125^{\text{th}}\ \text{number will be}\ 3.\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 125\ \text{numbers is}\ 561:\!\\ {\;} \qquad \text{The sum of one set of}\ 3,\ 4,\ 5,\ \text{and}\ 6\ \text{is}\ 18.\ \text{From the answer to question b,\ we know that}\ 31 \!\\ {\;} \qquad \text{sets of three numbers ends with}\ 124.\ \text{The sum of the first}\ 124\ \text{numbers is}\ 18 \times 31,\!\\ {\;} \qquad \text{or}\ 558.\ \text{The left over numbers is}\ 3. \ \text{So the sum of the first}\ 125\ \text{numbers in the pattern is}\!\\ {\;} \qquad 558 + 3,\ \text{or}\ 561.\end{align*}1.a. The 50th number is 1: 50÷6 is 8 with 2 left over and 8×6=48. So the 48th number is 3, the last number in the set. The 50th number is 2, the second number in the set.b. The 100th number is 3: 100÷6=16 with 4 left over and 6×16=96. So the 96th number is 3. Then the 100th number is 3.c. The sum of the first 100 numbers is 232: The sum of one set of 1, 2, 2, 3, 3, and 3 is 14. From the answer to question b,\ we know that 16 sets of six numbers ends with 96. The sum of the first 96 numbers is 16×14, or 224. The four left over numbers are 1, 2, 2, and 3, and their sum is 8. So the sum of the first 100 numbers in the pattern is 224+8, or 232.2.a. The 70th number is 4:70÷4 is 17 with two left over and 4×17=68. So the 68th number is 6, the last numberon the set. The 70th number is 4, the second number in the set.b. The 125th number is 3:125÷4=31 with one left over and 4×31=124. So the 124th number is 6.The 125th number will be 3.c. The sum of the first 125 numbers is 561:The sum of one set of 3, 4, 5, and 6 is 18. From the answer to question b,\ we know that 31sets of three numbers ends with 124. The sum of the first 124 numbers is 18×31,or 558. The left over numbers is 3. So the sum of the first 125 numbers in the pattern is558+3, or 561.

\begin{align*}3. \!\\ {\;} \quad \text{a}.\ \text{The}\ 67^{\text{th}}\ \text{number is}\ 3: \!\\ {\;} \qquad \ 67 \div 5 \ \text{is}\ 13\ \text{with two left over and}\ 5 \times 13 = 65.\ \text{So the}\ 65^{\text{th}}\ \text{number is}\ 9,\ \text{the last number}\!\\ {\;} \qquad \ \text{in the set. The}\ 66^{\text{th}}\ \text{number is}\ 1,\ \text{and the}\ 67^{\text{th}}\ \text{is}\ 3. \!\\ {\;} \quad \text{b}.\ \text{The}\ 129^{\text{th}}\ \text{number is}\ 7: \!\\ {\;} \qquad \ 129 \div 5 = 25 \ \text{with} \ 4 \ \text{left over and}\ 5 \times 25 = 125.\ \text{So the}\ 125^{\text{th}}\ \text{number is}\ 7. \!\\ {\;} \qquad \ \text{The}\ 129^{\text{th}}\ \text{is}\ 7,\ \text{the fourth number in the set.}\!\\ {\;} \quad \text{c}.\ \text{The sum of the first}\ 129 \ \text{numbers is}\ 641: \!\\ {\;} \qquad \text{The sum of one set of}\ 1,\ 3,\ 5,\ 7,\ \text{and}\ 9\ \text{is}\ 25.\ \text{From the answer to question b, we know that}\!\\ {\;} \qquad 25\ \text{sets of four numbers ends with}\ 125.\ \text{The sum of the first}\ 125\ \text{numbers is}\!\\ {\;} \qquad 25 \times 25,\ \text{or}\ 625.\ \text{The four left over numbers are}\ 1,\ 3,\ 5, \ \text{and}\ 7,\ \text{and their sum is}\ 16.\ \text{So the} \!\\ {\;} \qquad \text{sum of the first}\ 129\ \text{numbers in the pattern is}\ 625 + 16,\ \text{or}\ 641.\end{align*}3.a. The 67th number is 3: 67÷5 is 13 with two left over and 5×13=65. So the 65th number is 9, the last number in the set. The 66th number is 1, and the 67th is 3.b. The 129th number is 7: 129÷5=25 with 4 left over and 5×25=125. So the 125th number is 7. The 129th is 7, the fourth number in the set.c. The sum of the first 129 numbers is 641:The sum of one set of 1, 3, 5, 7, and 9 is 25. From the answer to question b, we know that25 sets of four numbers ends with 125. The sum of the first 125 numbers is25×25, or 625. The four left over numbers are 1, 3, 5, and 7, and their sum is 16. So thesum of the first 129 numbers in the pattern is 625+16, or 641.

Image Attributions

Show Hide Details
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Algebra-Explorations-K-7.9.10