<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

12.7: Chapter 12 Review

Difficulty Level: At Grade Created by: CK-12

Keywords & Theorems

Exploring Symmetry

  • Line of Symmetry
  • Line Symmetry
  • Rotational Symmetry
  • Center of Rotation
  • Angle of Rotation

Translations

  • Transformation
  • Rigid Transformation
  • Translation

Reflections

  • Reflection
  • Line of Reflection
  • Reflection over the \begin{align*}y-\end{align*}yaxis
  • Reflection over the \begin{align*}x-\end{align*}xaxis
  • Reflection over \begin{align*}y = x\end{align*}y=x
  • Reflection over \begin{align*}y = -x\end{align*}y=x

Rotations

  • Rotation
  • Center of Rotation
  • Angle of Rotation
  • Rotation of \begin{align*}180^\circ\end{align*}180
  • Rotation of \begin{align*}90^\circ\end{align*}90
  • Rotation of \begin{align*}270^\circ\end{align*}270

Compositions of Transformations

  • Composition (of transformations)
  • Glide Reflection
  • Reflections over Parallel Lines Theorem
  • Reflection over the Axes Theorem
  • Reflection over Intersecting Lines Theorem

Extension: Tessellating Polygons

  • Tessellation

Review Questions

Match the description with its rule.

  1. Reflection over the \begin{align*}y-\end{align*}yaxis - A. \begin{align*}(y, -x)\end{align*}(y,x)
  2. Reflection over the \begin{align*}x-\end{align*}xaxis - B. \begin{align*}(-y, -x)\end{align*}(y,x)
  3. Reflection over \begin{align*}y = x\end{align*} - C. \begin{align*}(-x, y)\end{align*}
  4. Reflection over \begin{align*}y = -x\end{align*} - D. \begin{align*}(-y, x)\end{align*}
  5. Rotation of \begin{align*}180^\circ\end{align*} - E. \begin{align*}(x, -y)\end{align*}
  6. Rotation of \begin{align*}90^\circ\end{align*} - F. \begin{align*}(y, x)\end{align*}
  7. Rotation of \begin{align*}270^\circ\end{align*} - G. \begin{align*}(x, y)\end{align*}
  8. Rotation of \begin{align*}360^\circ\end{align*} - H. \begin{align*}(-x, -y)\end{align*}

Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9697.

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Geometry-Basic.12.7
Here