<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

7.5: Proportionality Relationships

Difficulty Level: At Grade Created by: CK-12
Turn In

Learning Objectives

  • Identify proportional segments within triangles.
  • Extend triangle proportionality to parallel lines.

Review Queue

  1. Write a similarity statement for the two triangles in the diagram. Why are they similar?
  2. If XA=16,XY=18,XB=32, find XZ.
  3. If YZ=27, find AB.
  4. Find AY and BZ.

Know What? To the right is a street map of part of Washington DC. R Street, Q Street, and O Street are parallel and 7th Street is perpendicular to all three. All the measurements are given on the map. What are x and y?

Triangle Proportionality

Think about a midsegment of a triangle. A midsegment is parallel to one side of a triangle and divides the other two sides into congruent halves. The midsegment divides those two sides proportionally.

Example 1: A triangle with its midsegment is drawn below. What is the ratio that the midsegment divides the sides into?

Solution: The midsegment splits the sides evenly. The ratio would be 8:8 or 10:10, which both reduce to 1:1.

The midsegment divides the two sides of the triangle proportionally, but what about other segments?

Investigation 7-4: Triangle Proportionality

Tools Needed: pencil, paper, ruler

1. Draw ABC. Label the vertices.

2. Draw XY¯¯¯¯¯¯¯¯ so that X is on AB¯¯¯¯¯¯¯¯ ̅and Y is on BC¯¯¯¯¯¯¯¯. X and Y can be anywhere on these sides.

3. Is XBYABC? Why or why not? Measure AX,XB,BY, and YC. Then set up the ratios AXXB and YCYB. Are they equal?

4. Draw a second triangle, DEF. Label the vertices.

5. Draw XY¯¯¯¯¯¯¯¯ so that X is on DE¯¯¯¯¯¯¯¯ and Y is on EF¯¯¯¯¯¯¯¯ AND XY¯¯¯¯¯¯¯¯DF¯¯¯¯¯¯¯¯.

6. Is XEYDEF? Why or why not? Measure DX,XE,EY, and YF. Then set up the ratios DXXE and FYYE. Are they equal?

From this investigation, we see that if XY¯¯¯¯¯¯¯¯DF¯¯¯¯¯¯¯¯, then XY¯¯¯¯¯¯¯¯ divides the sides proportionally.

Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.

If DE¯¯¯¯¯¯¯¯AC¯¯¯¯¯¯¯¯, then BDDA=BEEC. (DABD=ECBE is also a true proportion.)

For the converse:

If BDDA=BEEC, then DE¯¯¯¯¯¯¯¯AC¯¯¯¯¯¯¯¯.

Triangle Proportionality Theorem Converse: If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Proof of the Triangle Proportionality Theorem

Given: ABC with DE¯¯¯¯¯¯¯¯AC¯¯¯¯¯¯¯¯


Statement Reason
1. DE¯¯¯¯¯¯¯¯AC¯¯¯¯¯¯¯¯ Given
2. 12,34 Corresponding Angles Postulate
3. ABCDBE AA Similarity Postulate
4. \begin{align*}AD + DB = AB, EC + EB = BC\end{align*} Segment Addition Postulate
5. \begin{align*}\frac{AB}{BD} = \frac{BC}{BE}\end{align*} Corresponding sides in similar triangles are proportional
6. \begin{align*}\frac{AD+DB}{BD} = \frac{EC+EB}{BE}\end{align*} Substitution PoE
7. \begin{align*}\frac{AD}{BD}+ \frac{DB}{DB} = \frac{EC}{BE} + \frac{BE}{BE}\end{align*} Separate the fractions
8. \begin{align*}\frac{AD}{BD} + 1 = \frac{EC}{BE} + 1\end{align*} Substitution PoE (something over itself always equals 1)
9. \begin{align*}\frac{AD}{BD} = \frac{EC}{BE}\end{align*} Subtraction PoE

We will not prove the converse; it is basically this proof but in the reverse order.

Example 2: In the diagram below, \begin{align*}\overline {EB} \| \overline {BD}\end{align*}. Find \begin{align*}BC\end{align*}.

Solution: Set up a proportion.

\begin{align*}\frac{10}{15} = \frac{BC}{12} \longrightarrow \ 15(BC) &= 120\\ BC &= 8\end{align*}

Example 3: Is \begin{align*}\overline{DE} \| \overline{CB}\end{align*}?

Solution: If the ratios are equal, then the lines are parallel.

\begin{align*}\frac{6}{18} = \frac{8}{24} = \frac{1}{3}\end{align*}

Because the ratios are equal, \begin{align*}\overline {DE} \| \overline{CB}\end{align*}.

Parallel Lines and Transversals

We can extend the Triangle Proportionality Theorem to multiple parallel lines.

Theorem 7-7: If three parallel lines are cut by two transversals, then they divide the transversals proportionally.

If \begin{align*}l \parallel m \parallel n\end{align*}, then \begin{align*}\frac{a}{b} = \frac{c}{d}\end{align*} or \begin{align*}\frac{a}{c} = \frac{b}{d}\end{align*}.

Example 4: Find \begin{align*}a\end{align*}.

Solution: The three lines are marked parallel, set up a proportion.

\begin{align*}\frac{a}{20} &= \frac{9}{15}\\ 180 &= 15a\\ a &= 12\end{align*}

Example 5: Find \begin{align*}b\end{align*}.

Solution: Set up a proportion.

\begin{align*}\frac{12}{9.6} &= \frac{b}{24}\\ 288 &= 9.6b\\ b &= 30\end{align*}

Example 6: Algebra Connection Find the value of \begin{align*}x\end{align*} that makes the lines parallel.

Solution: Set up a proportion and solve for \begin{align*}x\end{align*}.

\begin{align*}\frac{5}{8} = \frac{3.75}{2x-4} \longrightarrow \ 5(2x-4) &= 8(3.75)\\ 10x-20 &= 30\\ 10x &= 50\\ x &= 5\end{align*}

Theorem 7-7 can be expanded to any number of parallel lines with any number of transversals. When this happens all corresponding segments of the transversals are proportional.

Example 7: Find \begin{align*}a, b,\end{align*} and \begin{align*}c\end{align*}.

Solution: Line up the segments that are opposite each other.

\begin{align*}\frac{a}{9} &= \frac{2}{3} && \quad \ \frac{2}{3} = \frac{4}{b} && \quad \ \frac{2}{3} = \frac{3}{c}\\ 3a &= 18 && \quad 2b = 12 && \quad 2c = 9\\ a &= 6 && \quad \ \ b = 6 && \quad \ c = 4.5\end{align*}

Proportions with Angle Bisectors

The last proportional relationship we will explore is how an angle bisector intersects the opposite side of a triangle.

Theorem 7-8: If a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the lengths of the other two sides.

If \begin{align*}\triangle BAC \cong \triangle CAD\end{align*}, then \begin{align*}\frac{BC}{CD} = \frac{AB}{AD}\end{align*}.

Example 8: Find \begin{align*}x\end{align*}.

Solution: The ray is the angle bisector and it splits the opposite side in the same ratio as the sides. The proportion is:

\begin{align*}\frac{9}{x} &= \frac{21}{14}\\ 21x &= 126\\ x &= 6\end{align*}

Example 9: Algebra Connection Find the value of \begin{align*}x\end{align*} that would make the proportion true.

Solution: You can set up this proportion like the previous example.

\begin{align*}\frac{5}{3} &= \frac{4x+1}{15}\\ 75 &= 3(4x+1)\\ 75 &= 12x+3\\ 72 &= 12x\\ 6 &= x\end{align*}

Know What? Revisited To find \begin{align*}x\end{align*} and \begin{align*}y\end{align*}, you need to set up a proportion using parallel the parallel lines.

\begin{align*}\frac{2640}{x} = \frac{1320}{2380} = \frac{1980}{y}\end{align*}

From this, \begin{align*}x = 4760 \ ft\end{align*} and \begin{align*}y = 3570 \ ft\end{align*}.

Review Questions

  • Questions 1-12 are similar to Examples 1 and 2 and review.
  • Questions 13-18 are similar to Example 3.
  • Questions 19-24 are similar to Examples 8 and 9.
  • Questions 25-30 are similar to Examples 4-7.

Use the diagram to answers questions 1-5. \begin{align*}\overline{DB} \| \overline{FE}\end{align*}.

  1. Name the similar triangles. Write the similarity statement.
  2. \begin{align*}\frac{BE}{EC} = \frac{?}{FC}\end{align*}
  3. \begin{align*}\frac{EC}{CB} = \frac{CF}{?}\end{align*}
  4. \begin{align*}\frac{DB}{?} = \frac{BC}{EC}\end{align*}
  5. \begin{align*}\frac{FC+?}{FC} = \frac{?}{FE}\end{align*}

Use the diagram to answer questions 6-12. \begin{align*}\overline{AB} \| \overline {DE}\end{align*}.

  1. Find \begin{align*}BD\end{align*}.
  2. Find \begin{align*}DC\end{align*}.
  3. Find \begin{align*}DE\end{align*}.
  4. Find \begin{align*}AC\end{align*}.
  5. What is \begin{align*}BD:DC\end{align*}?
  6. What is \begin{align*}DC:BC\end{align*}?
  7. Why \begin{align*}BD:DC \neq DC:BC\end{align*}?

Use the given lengths to determine if \begin{align*}\overline{AB} \| \overline{DE}\end{align*}.

Algebra Connection Find the value of the missing variable(s).

Find the value of each variable in the pictures below.

Review Queue Answers

  1. \begin{align*}\triangle AXB \sim \triangle YXZ\end{align*} by AA Similarity Postulate
  2. \begin{align*}\frac{16}{18} = \frac{32}{XZ}, XZ = 36\end{align*}
  3. \begin{align*}\frac{16}{18} = \frac{AB}{27}, AB = 24\end{align*}
  4. \begin{align*}AY = 18-16 = 2, BZ = 36-32 = 4\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
8 , 9 , 10
Date Created:
Feb 22, 2012
Last Modified:
Aug 15, 2016
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original