<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

5.1: Midsegments

Difficulty Level: At Grade Created by: CK-12
Turn In

Learning Objectives

  • Define midsegment.
  • Use the Midsegment Theorem.

Review Queue

Find the midpoint between the given points.

  1. (-4, 1) and (6, 7)
  2. (5, -3) and (11, 5)
  3. Find the equation of the line between (-2, -3) and (-1, 1).
  4. Find the equation of the line that is parallel to the line from #3 through (2, -7).

Know What? A fractal is a repeated design using the same shape (or shapes) of different sizes. Below, is an example of the first few steps of a fractal. Draw the next figure in the pattern.

Defining Midsegment

Midsegment: A line segment that connects two midpoints of the sides of a triangle.

is the midsegment between and .

The tic marks show that and are midpoints.

and

Example 1: Draw the midsegment between and for above.

Solution: Find the midpoints of and using your ruler. Label these points and . Connect them to create the midsegment.

Example 2: You now have all three midpoints of . Draw in midsegment and .

Solution:

For every triangle there are three midsegments.

Midsegments in the Plane

Let’s transfer what we know about midpoints in the plane to midsegments in the plane. We will need to use the midpoint formula, .

Example 3: The vertices of are and . Find the midpoints of all three sides, label them and . Then, graph the triangle, plot the midpoints and draw the midsegments.

Solution: Use the midpoint formula 3 times to find all the midpoints.

and point

and , point

and , point

The graph is to the right.

Example 4: Find the slopes of and .

Solution: The slope of is . The slope of is .

From this we can conclude that . If we were to find the slopes of the other sides and midsegments, we would find and .

Example 5: Find and .

Solution: Now, we need to find the lengths of and . Use the distance formula.

From this we can conclude that is half of . If we were to find the lengths of the other sides and midsegments, we would find that is half of and is half of .

The Midsegment Theorem

The conclusions drawn in Examples 4 and 5 can be combined into the Midsegment Theorem.

Midsegment Theorem: The midsegment of a triangle is half the length of the side it is parallel to.

If is a midsegment of , then and .

Example 6a: Mark all the congruent segments on with midpoints , and .

Solution: Drawing in all three midsegments, we have:

Also, this means the four triangles are congruent by SSS.

Example 6b: Mark all the parallel lines on , with midpoints , and .

Solution:

To play with the properties of midsegments, go to http://www.mathopenref.com/trianglemidsegment.html.

Example 7: , and are the midpoints of the sides of the triangle.

Find

a)

b)

c) The perimeter of

Solution: Use the Midsegment Theorem.

a)

b)

c) Add up the three sides of to find the perimeter.

Remember: No line segment over means length or distance.

Example 8: Algebra Connection Find the value of and . and are midpoints.

Solution: . To find , set equal to 17.

Know What? Revisited To the left is a picture of the figure in the fractal pattern.

Review Questions

  • Questions 1-5 use the definition of a midsegment and the Midsegment Theorem.
  • Questions 6-9 and 18 are similar to Example 7.
  • Questions 10-17 are similar to Example 8.
  • Questions 19-22 are similar to Example 3.
  • Questions 23-30 are similar to Examples 3, 4, and 5.

Determine if each statement is true or false.

  1. The endpoints of a midsegment are midpoints.
  2. A midsegment is parallel to the side of the triangle that it does not intersect.
  3. There are three congruent triangles formed by the midsegments and sides of a triangle.
  4. If a line passes through two sides of a triangle and is parallel to the third side, then it is a midsegment.
  5. There are three midsegments in every triangle.

, and are midpoints of the sides of and .

  1. If , find and .
  2. If , find .
  3. If , and , find and .
  4. If and , find .

For questions 10-17, find the indicated variable(s). You may assume that all line segments within a triangle are midsegments.

  1. The sides of are 26, 38, and 42. is formed by joining the midpoints of .
    1. What are the lengths of the sides of ?
    2. Find the perimeter of .
    3. Find the perimeter of .
    4. What is the relationship between the perimeter of a triangle and the perimeter of the triangle formed by connecting its midpoints?

Coordinate Geometry Given the vertices of below find the midpoints of each side.

  1. and
  2. and
  3. and
  4. and

Multi-Step Problem The midpoints of the sides of a triangle are , and . Answer the following questions. The graph is below.

  1. Find the slope of , and .
  2. The side that passes through should be parallel to which midsegment? ( are all midsegments of a triangle).
  3. Using your answer from #24, take the slope of and use the “rise over run” in either direction to create a parallel line to that passes through . Extend it with a ruler.
  4. Repeat #24 and #25 with and . What are coordinates of the larger triangle?

Multi-Step Problem The midpoints of the sides of are , and . Answer the following questions.

  1. Find the slope of , and .
  2. Plot the three midpoints and connect them to form midsegment triangle, .
  3. Using the slopes, find the coordinates of the vertices of . (#22 above)
  4. Find using the distance formula. Then, find the length of the sides it is parallel to. What should happen?

Review Queue Answers

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Geometry-Basic.5.1
Here