<meta http-equiv="refresh" content="1; url=/nojavascript/"> Introduction to Discrete Random Variables | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Probability and Statistics - Basic (A Full Course) Go to the latest version.

Chapter 3: Introduction to Discrete Random Variables

Created by: CK-12

Introduction

In this chapter, you will learn about discrete random variables. Discrete random variables can take on a finite number of values in an interval, or as many values as there are positive integers. In other words, a discrete random variable can take on an infinite number of values, but not all the values in an interval. When you find the probabilities of these values, you are able to show the probability distribution. A probability distribution consists of all the values of the random variable, along with the probability of the variable taking on each of these values. Each probability must be between 0 and 1, and the probabilities must sum to 1.

You will also be introduced to the concept of a binomial distribution. This will be discussed in depth in the next chapter, but in this chapter, you will use a binomial distribution when talking about the number of successful events or the value of a random variable. A binomial distribution is only used when there are 2 possible outcomes. For example, you will use the binomial distribution formula for coin tosses (heads or tails). Other examples include yes/no responses, true or false questions, and voting Democrat or Republican. When the number of possible outcomes goes beyond 2, you use a multinomial distribution. Rolling a die is a common example of a multinomial distribution problem.

In addition, you will use factorials again for solving these problems. Factorials were introduced in Chapter 2 for permutations and combinations, but they are also used in many other probability problems. Finally, you will use a graphing calculator to show the difference between theoretical and experimental probability. The calculator is an effective and efficient tool for illustrating the difference between these 2 probabilities, and also for determining the experimental probability when the number of trials is large.

Chapter Outline

Chapter Summary

Image Attributions

Description

Difficulty Level:

Basic

Categories:

Grades:

Date Created:

Jul 25, 2013

Last Modified:

Jul 07, 2014
Files can only be attached to the latest version of None
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 

Original text