3.2: Relations and Functions
The following table of values represents data collected by a student in a math class.
Does this set of ordered pairs represent a function?
Watch This
Khan Academy Functions as Graphs
Guidance
Consider the relationship between two variables. You can think of this relationship in terms of an input/output machine.
If there is only one output for every input, you have a function. If not, you have a relation. Relations can have more than one output for every input.
A relation is any set of ordered pairs. A function is a set of ordered pairs where there is only one value of for every value of .
Look at the two tables below. Table A shows a relation that is a function. Table B shows a relation that is not a function.
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
0 | 0 |
1 | 1 |
2 | 2 |
2 | 1 |
A graph of a relation can be shown to be a function using the vertical line test. If a vertical line can be drawn through the graph such that it intersects the graph line more than once, the graph is not function but a relation.
Example A
Determine if the following relation is a function.
4 | 3.6 |
7.8 | 7.2 |
Solution:
The relation is a function because there is only one value of for every value of .
Example B
Which one of the following graphs represents a function?
Solution:
In order to answer this question, you need to use the vertical line test. A graph represents a function if no vertical line intersects the graph more than once. Let’s look at the first graph. Draw a vertical line through the graph.
Since the vertical line hit the graph more than once (indicated by the two red dots), the graph does not represent a function.
Since the vertical line hit the graph only once (indicated by the one red dot), the graph does represent a function.
Since the vertical line hit the graph only once (indicated by the one red dot), the graph does represent a function.
Since the vertical line hit the graph more than once (indicated by the three red dots), the graph does not represent a function.
Example C
Which one of the following represents a function?
Solution:
Concept Problem Revisited
If you look at this table, there are two places where you see the more than one output for a single input.
You can conclude that this set of ordered pairs does not represent a function. It is a relation.
Vocabulary
- Function
- A function is a set of ordered pairs that shows a relationship where there is only one output for every input. In other words, for every value of , there is only one value for .
- Relation
- A relation is any set of ordered pairs . A relation has more than one output for an input.
- Vertical Line Test
- The Vertical Line Test is a test for functions. If you take your pencil and draw a straight line through any part of the graph, and the pencil hits the graph more than once, the graph is not a function. Therefore, a graph will represent a function if the vertical line test passes, In other words, no vertical line intersects the graph more than once.
Guided Practice
1. Is the following a representation of a function? Explain.
2. Which of the following relations represent a function? Explain.
3. Which of the following relations represent a function? Explain.
- a)
- b)
- c)
- d)
Answers:
1.
- This is a function because there is one output for every input. In other words, if you think of these points as coordinate points , there is only one value for given for every value of .
2. a)
- Since the vertical line hit the graph more than once (indicated by the two green circles), the graph does not represent a function.
- b)
- Since the vertical line hit the graph only once (indicated by the one green dot), the graph does represent a function.
3. a)
- This is a function because there is only one output for a given input.
- b)
- This is not a function because there is more than one output for a given input. For the input number 2, there are two output values (7 and 9)
- c)
- Since the vertical line hit the graph more than once (indicated by the three blue circles), the graph does not represent a function.
- d)
- Since the vertical line hit the graph only once (indicated by the one blue dot), the graph does represent a function.
Practice
Determine whether each of the following is a relation or a function. Explain your reasoning.
Which of the following relations represent a function? Explain.
Which of the following relations does NOT represent a function? Explain.
Notes/Highlights Having trouble? Report an issue.
Color | Highlighted Text | Notes | |
---|---|---|---|
Please Sign In to create your own Highlights / Notes | |||
Show More |
Function
A function is a relation where there is only one output for every input. In other words, for every value of , there is only one value for .Relation
A relation is any set of ordered pairs . A relation can have more than one output for a given input.Vertical Line Test
The vertical line test says that if a vertical line drawn anywhere through the graph of a relation intersects the relation in more than one location, then the relation is not a function.Image Attributions
Here you will learn about relations, and what makes a relation a function.