<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 7.6: Special Cases of Quadratic Factorization

Difficulty Level: Advanced Created by: CK-12
Estimated8 minsto complete
%
Progress
Practice Special Products of Polynomials

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated8 minsto complete
%
Estimated8 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

A box is to be designed for packaging with a side length represented by the quadratic 9b264\begin{align*}9b^2 - 64\end{align*}. If this is the most economical box, what are the dimensions?

### Guidance

When factoring quadratics, there are special cases that can be factored more quickly. There are two special quadratics that you should learn to recognize:

Special Case 1 (Perfect Square Trinomial): x2±2xy+y2=(x±y)2\begin{align*}x^2 \pm 2xy + y^2=(x\pm y)^2\end{align*}

• Example: x2+10x+25=(x+5)2\begin{align*} x^2 + 10x +25=(x+5)^2\end{align*}
• Example: 4x232x+64=(2x8)2\begin{align*} 4x^2 -32x + 64=(2x-8)^2\end{align*}

Special Case 2 (Difference of Perfect Squares): x2y2=(x+y)(xy)\begin{align*}x^2 - y^2=(x+y)(x-y)\end{align*}

• Example: 25x2100=(5x+10)(5x10)\begin{align*}25x^2 - 100=(5x+10)(5x-10)\end{align*}
• Example: 4x225=(2x5)(2x+5)\begin{align*}4x^2-25=(2x-5)(2x+5)\end{align*}

Keep in mind that you can always use the box method to do the factoring if you don't notice the problem as a special case.

#### Example A

Factor 2x2+28x+98\begin{align*}2x^2+28x+98\end{align*}.

Solution: First, notice that there is a common factor of 2. Factor out the common factor:

2x2+28x+98=2(x2+14x+49)\begin{align*}2x^2+28x+98=2(x^2+14x+49)\end{align*}

Next, notice that the first and last terms are both perfect squares (x2=xx\begin{align*}x^2=x\cdot x\end{align*} and 49=77\begin{align*}49=7\cdot 7\end{align*}, and the middle term is 2 times the product of the roots of the other terms (14x=2x7\begin{align*}14x=2\cdot x\cdot 7\end{align*}). This means x2+14x+49\begin{align*}x^2+14x+49\end{align*} is a perfect square trinomial (Special Case 1). Using the pattern:

x2+14x+49=(x+7)2\begin{align*}x^2+14x+49=(x+7)^2\end{align*}

Therefore, the complete factorization is 2x2+28x+98=2(x+7)2\begin{align*}2x^2+28x+98=2(x+7)^2\end{align*}.

#### Example B

Factor 8a224a+18\begin{align*}8a^2-24a+18\end{align*}.

Solution: First, notice that there is a common factor of 2. Factor out the common factor:

8a224a+18=2(4a212a+9)\begin{align*}8a^2-24a+18=2(4a^2-12a+9)\end{align*}

Next, notice that the first and last terms are both perfect squares and the middle term is 2 times the product of the roots of the other terms (12a=22a3\begin{align*}12a=2\cdot 2a\cdot 3\end{align*}). This means 4a212a+9\begin{align*}4a^2-12a+9\end{align*} is a perfect square trinomial (Special Case 1). Because the middle term is negative, there will be a negative in the binomial. Using the pattern:

4a212a+9=(2a3)2\begin{align*}4a^2-12a+9=(2a-3)^2\end{align*}

Therefore, the complete factorization is 8a224a+18=2(2a3)2\begin{align*}8a^2-24a+18=2(2a-3)^2\end{align*}.

#### Example C

Factor x216\begin{align*}x^2-16\end{align*}.

Solution: Notice that there are no common factors. The typical middle term of the quadratic is missing and each of the terms present are perfect squares and being subtracted. This means x216\begin{align*}x^2-16\end{align*} is a difference of perfect squares (Special Case 2). Using the pattern:

x216=(x4)(x+4)\begin{align*}x^2-16=(x-4)(x+4)\end{align*}

Note that it would also be correct to say x216=(x+4)(x4)\begin{align*}x^2-16=(x+4)(x-4)\end{align*}. It does not matter whether you put the + version of the binomial first or the – version of the binomial first.

#### Concept Problem Revisited

A box is to be designed for packaging with a side length represented by the quadratic 9b264\begin{align*}9b^2 - 64\end{align*}. If this is the most economical box, what are the dimensions?

First: factor the quadratic to find the value for b\begin{align*}b\end{align*}.

9b264\begin{align*}9b^2-64\end{align*}

This is a difference of perfect squares (Special Case 2). Use that pattern:

9b264=(3b8)(3b+8)\begin{align*}9b^2-64=(3b-8)(3b+8)\end{align*}

To finish this problem we need to solve a quadratic equation. This idea is explored in further detail in another concept.

9b264=(3b+8)(3b8) 3b+8=03b8=0   3b=83b=8 b=83 b=83\begin{align*}& 9b^2-64=(3b+8)(3b-8)\\ & \qquad \qquad \quad \swarrow \qquad \qquad \searrow\\ & \ \quad 3b+8=0 \qquad \qquad 3b-8=0\\ & \ \qquad \ \ 3b=-8 \qquad \qquad \quad 3b=8\\ & \ \qquad \quad b=\frac{-8}{3} \qquad \qquad \quad \ b=\frac{8}{3}\end{align*}

The most economical box is a cube. Therefore the dimensions are 83×83×83\begin{align*}\frac{8}{3} \times \frac{8}{3} \times \frac{8}{3}\end{align*}

### Vocabulary

Difference of Perfect Squares
The difference of perfect squares is a special case of a quadratic expression where there is no middle term and the two terms present are both perfect squares. The general equation for the difference of two squares is:

x2y2=(x+y)(xy)\begin{align*}x^2-y^2=(x+y)(x-y)\end{align*}

Perfect Square Trinomial
The perfect square trinomials are the result of a binomial being multiplied by itself. The two variations of the perfect square trinomial are:
1. (x+y)2=x2+2xy+y2\begin{align*}(x+y)^2=x^2+2xy+y^2\end{align*}
2. (xy)2=x22xy+y2\begin{align*}(x-y)^2=x^2-2xy+y^2\end{align*}

### Guided Practice

1. Factor completely s218s+81\begin{align*}s^2-18s+81\end{align*}

2. Factor completely 5098x2\begin{align*}50-98x^2\end{align*}

3. Factor completely 4x2+48x+144\begin{align*}4x^2+48x+144\end{align*}

1. This is Special Case 1. s218s+81=(s9)2\begin{align*}s^2-18s+81=(s-9)^2\end{align*}

2. First factor out the common factor of 2. Then, it is Special Case 2. 5098x2=2(57x)(5+7x)\begin{align*}50-98x^2=2(5-7x)(5+7x)\end{align*}

3. First factor out the common factor of 4. Then, it is Special Case 1. 4x2+48x+144=4(x+6)2\begin{align*}4x^2+48x+144=4(x+6)^2\end{align*}

### Practice

Factor each of the following:

1. s2+18s+81\begin{align*}s^2+18s+81\end{align*}
2. x2+12x+36\begin{align*}x^2+12x+36\end{align*}
3. y214y+49\begin{align*}y^2-14y+49\end{align*}
4. 4a2+20a+25\begin{align*}4a^2+20a+25\end{align*}
5. 9s248s+64\begin{align*}9s^2-48s+64\end{align*}
6. s281\begin{align*}s^2-81\end{align*}
7. x249\begin{align*}x^2-49\end{align*}
8. 4t225\begin{align*}4t^2-25\end{align*}
9. 25w236\begin{align*}25w^2-36\end{align*}
10. 6481a2\begin{align*}64-81a^2\end{align*}
11. \begin{align*}y^2-22y+121\end{align*}
12. \begin{align*}16t^2-49\end{align*}
13. \begin{align*}9a^2+30a+25\end{align*}
14. \begin{align*}100-25b^2\end{align*}
15. \begin{align*}4s^2-28s+49\end{align*}

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Difference of Squares A difference of squares is a quadratic equation in the form $a^2-b^2$.
Perfect Square Trinomial A perfect square trinomial is a quadratic expression of the form $a^2+2ab+b^2$ (which can be rewritten as $(a+b)^2$) or $a^2-2ab+b^2$ (which can be rewritten as $(a-b)^2$).
Quadratic form A polynomial in quadratic form looks like a trinomial or binomial and can be factored like a quadratic expression.

Show Hide Details
Description
Difficulty Level:
Authors:
Tags:
Subjects: