1.2: Addition of Fractions
Lily and Howard ordered a pizza that was cut into 8 slices. Lily ate 3 slices and Howard ate 4 slices. What fraction of the pizza did each person eat? What fraction of the pizza did they eat all together?
Watch This
Khan Academy Adding and Subtracting Fractions
Guidance
The problem above can be represented using fraction strips.
To add fractions, the fractions must have the same bottom numbers (denominators). Both fractions have a denominator of 5. The answer is the result of adding the top numbers (numerators). The numbers in the numerator are 1 and 2. The sum of 1 and 2 is 3. This sum is written in the numerator over the denominator of 5. Therefore
A number line can also be used to show the addition of fractions, as you will explore in Example C.
The sum of two fractions will sometimes result in an answer that is an improper fraction. An improper fraction is a fraction which has a larger numerator than denominator. This answer can be written as a mixed number. A mixed number is a number made up of a whole number and a fraction.
In order to add fractions that have different denominators, the fractions must be expressed as equivalent fractions with a LCD. The sum of the numerators can be written over the common denominator.
Example A
Example B
Louise is taking inventory of the amount of water in the water coolers located in the school. She estimates that one cooler is
Use fraction strips to represent each fraction.
The two green pieces will be replaced with eight purple pieces and the one blue piece will be replaced with three purple pieces.
The amount of water in the two coolers can be represented by the single fraction
The denominator of 12 is the LCD (least common denominator) of
Example C
What is
The number line is labeled in intervals of 4 which indicates that each interval represents
From here, move to the right
The sum of
Concept Problem Revisited
Lily ate
Vocabulary
 Denominator

The denominator of a fraction is the number on the bottom that indicates the total number of equal parts in the whole or the group.
58 has denominator 8.
 Fraction
 A fraction is any rational number that is not an integer.
 Improper Fraction
 An improper fraction is a fraction in which the numerator is larger than the denominator.

83 is an improper fraction.
 LCD

The least common denominator is the lowest common multiple of the denominators of two or more fractions. The least common denominator of
34 and15 is 20.
 LCM
 The least common multiple is the lowest common multiple that two or more numbers share. The least common multiple of 6 and 5 is 30.
 Mixed Number

A mixed number is a number made up of a whole number and a fraction such as
435 .
 Numerator

The numerator of a fraction is the number on top that is the number of equal parts being considered in the whole or the group.
58 has numerator 5.
Guided Practice
1. Use a model to answer the problem
2. Use a number line to determine the answer to the problem
3. Determine the answer to
Answers:
1.
Use fraction strips to represent each fraction.
The two fractions now have the same denominator of 6.
The one yellow strip can be replaced with three green strips and the one orange strip can be replaced with one green strip.
2.
Use a
From this point, move to the right a total of 2 intervals.
\begin{align*}& \frac{3}{4}+\frac{1}{2}=\frac{3}{4}+\frac{2}{4}=\frac{5}{4}\end{align*}
On the number line you stopped at the point \begin{align*}1 \frac{1}{4}\end{align*}
3. \begin{align*}\frac{1}{6}+\frac{3}{4}=?\end{align*}
The least common multiple of 6 and 4 is 12. This means that both fractions must have a common denominator of 12 before they can be added.
\begin{align*}\frac{1}{6} \left(\frac{2}{2}\right)=\frac{2}{12}\end{align*}
\begin{align*}\frac{3}{4} \left(\frac{3}{3}\right)=\frac{9}{12}\end{align*}
\begin{align*}& \frac{1}{6}+\frac{3}{4}=\frac{2}{12}+\frac{9}{12}=\frac{11}{12}\end{align*}
\begin{align*}\frac{2}{5}+\frac{2}{3}=?\end{align*}
The least common multiple of 5 and 3 is 15. This means that both fractions must have a common denominator of 15 before they can be added.
\begin{align*}\frac{2}{5} \left(\frac{3}{3}\right)=\frac{6}{15}\end{align*}
\begin{align*}\frac{2}{3} \left(\frac{5}{5}\right)=\frac{10}{15}\end{align*}
\begin{align*}& \frac{2}{5}+\frac{2}{3}=\frac{6}{15}+\frac{10}{15}=\frac{16}{15}=1 \frac{1}{15}\end{align*}
\begin{align*}\frac{16}{15}\end{align*}
Practice
Complete the following addition problems using any method.

\begin{align*}\frac{1}{4}+\frac{5}{8}\end{align*}
14+58  \begin{align*}\frac{2}{5}+\frac{1}{3}\end{align*}
 \begin{align*}\frac{2}{9}+\frac{2}{3}\end{align*}
 \begin{align*}\frac{3}{7}+\frac{2}{3}\end{align*}
 \begin{align*}\frac{7}{10}+\frac{1}{5}\end{align*}
 \begin{align*}\frac{2}{3}+\frac{1}{2}\end{align*}
 \begin{align*}\frac{2}{5}+\frac{3}{10}\end{align*}
 \begin{align*}\frac{5}{9}+\frac{2}{3}\end{align*}
 \begin{align*}\frac{3}{8}+\frac{3}{4}\end{align*}
 \begin{align*}\frac{3}{5}+\frac{3}{10}\end{align*}
 \begin{align*}\frac{7}{11}+\frac{1}{2}\end{align*}
 \begin{align*}\frac{7}{8}+\frac{5}{12}\end{align*}
 \begin{align*}\frac{3}{4}+\frac{5}{6}\end{align*}
 \begin{align*}\frac{5}{6}+\frac{2}{5}\end{align*}
 \begin{align*}\frac{4}{5}+\frac{3}{4}\end{align*}
For each of the following questions, write an addition statement and find the result. Express all answers as either proper fraction or mixed numbers.
 Karen used \begin{align*}\frac{5}{8} \ cups\end{align*} of flour to make cookies. Jenny used \begin{align*}\frac{15}{16} \ cups\end{align*} of flour to make a cake. How much flour did they use altogether?
 Lauren used \begin{align*}\frac{3}{4} \ cup\end{align*} of milk, \begin{align*}1 \frac{1}{3} \ cups\end{align*} of flour and \begin{align*}\frac{3}{8} \ cup\end{align*} of oil to make pancakes. How many cups of ingredients did she use in total?
 Write two fractions with different denominators whose sum is \begin{align*}\frac{5}{6}\end{align*}. Use fraction strips to model your answer.
 Allan’s cat ate \begin{align*}2 \frac{2}{3} \ cans\end{align*} of food in one week and \begin{align*}3 \frac{1}{4} \ cans\end{align*} the next week. How many cans of food did the cat eat in two weeks?
 Amanda and Justin each solved the same problem.

 Amanda’s Solution:



\begin{align*}& \frac{1}{6}+\frac{3}{4}\\
& \frac{2}{12}+\frac{9}{12}\\
& =\frac{11}{24}\end{align*}

\begin{align*}& \frac{1}{6}+\frac{3}{4}\\
& \frac{2}{12}+\frac{9}{12}\\
& =\frac{11}{24}\end{align*}


 Justin’s Solution:



\begin{align*}& \frac{1}{6}+\frac{3}{4}\\
& \frac{2}{12}+\frac{9}{12}\\
& =\frac{11}{12}\end{align*}

\begin{align*}& \frac{1}{6}+\frac{3}{4}\\
& \frac{2}{12}+\frac{9}{12}\\
& =\frac{11}{12}\end{align*}


 Who is correct? What would you tell the person who has the wrong answer?
Image Attributions
Description
Learning Objectives
Here you will learn to add real numbers using different representations. You will learn to add fractions by using appropriate models and by using the number line. These methods will lead to the formation of rules for adding fractions.