1.13: Decimal Notation
Which is greater, \begin{align*}\frac{18}{99}\end{align*}
Watch This
Khan Academy Converting Fractions to Decimals
Guidance
To change a fraction to a decimal number, the numerator must be divided by the denominator. The denominator is the divisor, the numerator is the dividend and the decimal number is the quotient. First change \begin{align*}\frac{3}{4}\end{align*}
\begin{align*}\frac{3}{4}=3 \div 4\end{align*}
\begin{align*}& \overset{ \ \ {\color{red}0.75}}{4 \overline{ ) {3.00 \;}}}\\
& \underline{0 \;\;\;\;\;}\\
& \ \ 3 \ 0\\
& \underline{ 2 \ 8 \; \;}\\
& \ \quad \ 20\\
& \underline{ \;\;\; 20 \;}\\
& \qquad \ 0\\\end{align*}
When the fraction \begin{align*}\frac{3}{4}\end{align*}
\begin{align*}\frac{3}{13}=3 \div 13\end{align*}
\begin{align*}& \overset{ \ \ {\color{red}0.2307692307}}{13 \overline{ ) {3.0000000000 \;}}}\\
& \underline{ \ 0 \;}\\
& \quad 3 \ 0\\
& \underline{ \ 2 \ 6 \;}\\
& \qquad 40\\
& \underline{ \;\;\;\;\;39}\\
& \ \qquad \ 10\\
& \underline{ \;\;\;\;\;\;\;\;0}\\
& \ \qquad \ 100\\
& \underline{ \;\;\;\;\;\;\;\;\;91}\\
& \ \qquad \quad \ \ 90\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;78}\\
& \ \qquad \quad \ \ 120\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;117}\\
& \ \qquad \qquad \ \ 30\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;26}\\
& \ \qquad \qquad \quad \ 40\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;39}\\
& \ \qquad \qquad \quad \ \ 10\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0}\\
& \ \qquad \qquad \quad \ \ 100\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;91}\\
& \ \qquad \qquad \qquad \ \ 9\\\end{align*}
When the fraction \begin{align*}\frac{3}{13}\end{align*}
All periodic decimal numbers can be expressed as common fractions. If the decimal number is nonperiodic, it cannot be expressed as a common fraction.
A rational number is any number that be written in the form \begin{align*}\frac{a}{b}\end{align*}
Example A
What fraction is equal to 0.45454545?
The decimal number is a periodic or repeating decimal. The period has a length of two. This means that the pattern that is repeating consists of 2 digits. To express the decimal number as a fraction, follow these steps:
Step 1: Let \begin{align*}x=0.45454545\end{align*}
Step 2: The repeating digit is 45. Place the repeating digit to the left of the decimal point by moving the decimal point 2 places to the right.
45.454545
To move the decimal point two places to the right, the decimal number was multiplied by 100. If you go back to step 1, you will see the equation \begin{align*}x=0.45454545\end{align*}
Step 3: The repeating digits must be to the right of the decimal point. The digits are to the right of the decimal point which means that no multiplication is necessary to move the decimal point. The two equations that you now have are \begin{align*}x=0.45454545\end{align*}
Step 4: Subtract the two equations and solve for \begin{align*}x\end{align*}
\begin{align*}&100x=45.454545\\
& \underline{\;\; x=0.45454545}\\
& \frac{99x}{99}=\frac{45}{99}\\
& \quad \ x=\frac{45}{99}=\frac{5}{11}\end{align*}
Example B
Decimal numbers that terminate can be more readily changed to fractions.
What fraction is equal to 0.125?
This decimal appears to be a terminating decimal number. There is no indication that the division continues and no sign of a repeating pattern. The steps to follow to express 0.125 as a fraction are:
Step 1: Express the decimal number as a whole number by moving the decimal point to the right. In this case, the decimal must be moved three places to the right.
Step 2: \begin{align*}0.125=125\end{align*}
Express 125 as a fraction with a denominator of 1 and three zeros. The three zeros represent the number of places that the decimal point was moved.
\begin{align*}\frac{125}{1000}\end{align*}
Step 3: If possible, simplify the fraction. If you are not sure of the simplified form, your calculator, TI83, will do the calculations.
Therefore, the decimal number of 0.125 is equivalent to the fraction \begin{align*}\frac{1}{8}\end{align*}
The method shown above is one that can be used if you can’t remember the place value associated with the decimal numbers. If you remember the place values, you can simply write the decimal as a fraction and simplify that fraction.
Example C
Are the following decimal numbers terminating or periodic? If they are periodic, what is the period and what is its length?
i) 0.318181818
ii) 0.375
iii) 0.3125
iv) 0.121 122 111 2
Solution:
i) 0.318181818 A periodic decimal number with a period of 18. The length of the period is 2.
ii) 0.375 A terminating decimal number.
iii) 0.3125 A terminating decimal number
iv) 0.121 122 111 2 This decimal number is not a terminating decimal nor is it a periodic decimal. Therefore, the decimal number is not a rational number. Decimal numbers that are nonperiodic belong to the irrational numbers.
Concept Problem Revisited
You can convert both fractions to decimals in order to figure out which is greater.
\begin{align*}\frac{18}{99}=.1818...\end{align*}
\begin{align*}\frac{15}{80}=.1875\end{align*}
You can see that \begin{align*}\frac{15}{80}\end{align*}
Vocabulary
 Irrational Numbers

An irrational number is the set of nonperiodic decimal numbers. Some examples of irrational numbers are \begin{align*}\sqrt{3},\sqrt{2}\end{align*}
3√,2√ and \begin{align*}\pi\end{align*}π .
 Periodic Decimal
 A periodic decimal is a decimal number that has a pattern of digits that repeat. The decimal number 0.146 532 532 5, is a periodic decimal.
 Rational Numbers

A rational number is any number that be written in the form \begin{align*}\frac{a}{b}\end{align*}
ab where \begin{align*}b \ne 0\end{align*}b≠0 . Therefore, periodic decimal numbers and terminating decimal numbers are rational numbers.
 Terminating Decimal
 A terminating decimal is a decimal number that ends. The process of dividing the fraction ends when the remainder is zero. The decimal number 0.25 is a terminating decimal.
Guided Practice
1. Express 2.018181818 in the form \begin{align*}\frac{a}{b}\end{align*}
2. Express \begin{align*}\frac{15}{11}\end{align*}
3. If one tablet of micro K contains 0.5 grams of potassium, how much is contained in \begin{align*}2\frac{3}{4}\end{align*}
Answers:
1. 2.018181818
Let \begin{align*}x=2.018181818\end{align*}
2018.181818 The period must be placed to the left of the decimal point. This is done by moving the decimal point three places to the right. (Multiply both sides by 1000)
\begin{align*}1000x=2018.181818\end{align*}
2.018181818 The repeating digits must be placed to the right of the decimal point. The decimal point and the repeating digits are separated by a zero. The decimal point must be moved one place to the right. (Multiply both sides by 10)
\begin{align*}10x=20.18181818\end{align*}
\begin{align*}& 1000 x=2018.181818 \qquad \text{These are the two equations that must be subtracted.}\\
& \underline{10x=20.18181818}\\
& \frac{990x}{990}=\frac{1998}{990} \qquad \qquad \quad \ \ \text{Solve for} \ x.\\
& \quad \ \ x=\frac{1998}{990}\end{align*}
Use your calculator to simplify the fraction.
\begin{align*}x=\frac{1998}{990}\end{align*}
\begin{align*}x=\frac{111}{55}\end{align*}
The fraction is in the form of \begin{align*}\frac{a}{b}\end{align*}
2. \begin{align*}\frac{15}{11}=15 \div 11\end{align*}
Long division must be done to express the fraction as a decimal number.
\begin{align*}& \overset{ \ \ 1.363636}{11 \overline{ ) {15.000000 \;}}}\\
& \underline{ \ \ 11 \;}\\
& \qquad 40\\
& \underline{ \;\;\;\;\;33}\\
& \ \qquad \ 70\\
& \underline{ \;\;\;\;\;\;\;66}\\
& \ \qquad \quad 40\\
& \underline{ \;\;\;\;\;\;\;\;\;\;33}\\
& \ \qquad \quad \ \ 70\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;66}\\
& \ \qquad \qquad 40\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;33}\\
& \ \qquad \qquad \ \ 70\\
& \underline{ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;66}\\
& \ \qquad \qquad \quad \ 4\\\end{align*}
\begin{align*}\boxed{\frac{15}{11}=1.363636}\end{align*}
3. The number of tablets is given as a mixed number.
\begin{align*}& 2 \frac{3}{4}\\ & \frac{3}{4}=3 \div 4\\ & \overset{ \ \ 0.75}{4 \overline{ ) {3.00 \;}}}\\ & \underline{ 2 \ 8 }\\ & \quad \ \ 20\\ & \underline{ \;\;\;20} \qquad \text{Change the fraction to a decimal number.}\\ & \qquad \ 0\end{align*}
The number of grams of potassium was given as a decimal number. The answer should also be expressed as a decimal number.
The number of tablets is 2.75.
The number of grams of potassium in these tablets is:
\begin{align*}2.75 \times 0.5=1.375 \ grams\end{align*}
Practice
Express the following fractions in decimal form.
 \begin{align*}\frac{1}{12}\end{align*}
 \begin{align*}\frac{6}{11}\end{align*}
 \begin{align*}\frac{3}{20}\end{align*}
 \begin{align*}\frac{1}{13}\end{align*}
 \begin{align*}\frac{3}{8}\end{align*}
Express the following decimal numbers in the form \begin{align*}\frac{a}{b}\end{align*}.
 0.325
 3.72727272
 0.245454545
 0.618
 0.36363636
Complete the following table.
Problem  Fraction  Decimal 

11.  \begin{align*}\frac{5}{64}\end{align*}  
12.  \begin{align*}\frac{11}{32}\end{align*}  
13.  \begin{align*}\frac{1}{20}\end{align*}  
14.  \begin{align*}0.0703125\end{align*}  
15.  \begin{align*}0.1875\end{align*} 
Notes/Highlights Having trouble? Report an issue.
Color  Highlighted Text  Notes  

Please Sign In to create your own Highlights / Notes  
Show More 
Image Attributions
Here you will learn the difference between a terminating decimal number and a periodic decimal number. You will also learn how to express a given fraction as a decimal number and how to express a given decimal number as a fraction.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.