<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

6.6: Exponential Expressions

Difficulty Level: Advanced Created by: CK-12
Atoms Practice
Estimated12 minsto complete
Practice Evaluating Exponential Expressions
Estimated12 minsto complete
Practice Now

Can you simplify the following expression so that it has only positive exponents?


Watch This

James Sousa: Simplify Exponential Expressions


The following table summarizes all of the rules for exponents.

Laws of Exponents

If \begin{align*}a \in R, a \ge 0\end{align*} and \begin{align*}m, n \in Q\end{align*}, then

  1. \begin{align*}a^m \times a^n=a^{m+n}\end{align*}
  2. \begin{align*}\frac{a^m}{a^n}=a^{m-n} \ (\text{if} \ m > n, a \neq 0)\end{align*}
  3. \begin{align*}(a^m)^n=a^{mn}\end{align*}
  4. \begin{align*}(ab)^n=a^nb^n\end{align*}
  5. \begin{align*}\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \ (b \neq 0)\end{align*}
  6. \begin{align*}a^0=1 \ (a \neq 0)\end{align*}
  7. \begin{align*}a^{-m}=\frac{1}{a^m}\end{align*}
  8. \begin{align*}a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m\end{align*}

Example A

Evaluate \begin{align*}81^{-\frac{1}{4}}\end{align*}.

Solution: First, rewrite with a positive exponent:


Next, evaluate the fractional exponent:


Example B

Simplify \begin{align*}(4x^3 y) (3x^5 y^2 )^4 \end{align*}.


\begin{align*}(4x^3 y) (3x^5 y^2 )^4&=(4x^3 y) (81x^{20} y^8 )\\ & =324x^{23}y^9\end{align*}

Example C

Simplify \begin{align*}\left(\frac{x^{-2}y}{x^4y^3}\right)^{-2}\end{align*}.


\begin{align*}\left(\frac{x^{-2}y}{x^4y^3}\right)^{-2}&=\left(\frac{x^4y^3}{x^{-2}y}\right)^{2}\\ &=(x^6y^2)^{2}\\ &=x^{12}y^4\end{align*}

Concept Problem Revisited

\begin{align*}\frac{8x^3y^{-2}}{(-4x^2y^4)^{-2}}&=(8x^3y^{-2})(-4x^2y^4)^2\\ &=(8x^3y^{-2})(16x^4y^8) \\ &=8\cdot 16 \cdot x^3 \cdot x^4 \cdot y^{-2} \cdot y^8\\ &=128x^7y^6\end{align*}


In an algebraic expression, the base is the variable, number, product or quotient, to which the exponent refers. Some examples are: In the expression \begin{align*}2^5\end{align*}, ‘2’ is the base. In the expression \begin{align*}(-3y)^4\end{align*}, ‘\begin{align*}-3y\end{align*}’ is the base.
In an algebraic expression, the exponent is the number to the upper right of the base that tells how many times to multiply the base times itself. Some examples are:
In the expression \begin{align*}2^5\end{align*}, ‘5’ is the exponent. It means to multiply 2 times itself 5 times as shown here: \begin{align*}2^5=2 \times 2 \times 2 \times 2 \times 2\end{align*}.
In the expression \begin{align*}(-3y)^4\end{align*}, ‘4’ is the exponent. It means to multiply \begin{align*}-3y\end{align*} times itself 4 times as shown here: \begin{align*}(-3y)^4=-3y \times -3y \times -3y \times -3y\end{align*}.
Laws of Exponents
The laws of exponents are the algebra rules and formulas that tell us the operation to perform on the exponents when dealing with exponential expressions.

Guided Practice

Use the laws of exponents to simplify each of the following:

1. \begin{align*}(-2x)^5 (2x^2)\end{align*}

2. \begin{align*}(16x^{10}) \left(\frac{3}{4}x^5\right)\end{align*}

3. \begin{align*}\frac{(x^{15})(x^{24})(x^{25})}{(x^7)^8}\end{align*}


1. \begin{align*}(-2x)^5 (2x^2)=(-32x^5)(2x^2)=-64x^7\end{align*}

2. \begin{align*}(16x^{10}) \left(\frac{3}{4}x^5\right)=12x^{15}\end{align*}

3. \begin{align*}\frac{(x^{15})(x^{24})(x^{25})}{(x^7)^8}=\frac{x^{64}}{x^{56}}=x^8\end{align*}


Simplify each expression.

  1. \begin{align*}(x^{10}) (x^{10})\end{align*}
  2. \begin{align*}(7x^3)(3x^7)\end{align*}
  3. \begin{align*}(x^3 y^2) (xy^3) (x^5 y)\end{align*}
  4. \begin{align*}\frac{(x^3)(x^2)}{(x^4)}\end{align*}
  5. \begin{align*}\frac{x^2}{x^{-3}}\end{align*}
  6. \begin{align*}\frac{x^6 y^8}{x^4 y^{-2}}\end{align*}
  7. \begin{align*}(2x^{12})^3\end{align*}
  8. \begin{align*}(x^5 y^{10})^7\end{align*}
  9. \begin{align*}\left(\frac{2x^{10}}{3y^{20}}\right)^3\end{align*}

Express each of the following as a power of 3. Do not evaluate.

  1. \begin{align*}(3^3)^5\end{align*}
  2. \begin{align*}(3^9)(3^3)\end{align*}
  3. \begin{align*}(9)(3^7)\end{align*}
  4. \begin{align*}9^4\end{align*}
  5. \begin{align*}(9)(27^2)\end{align*}

Apply the laws of exponents to evaluate each of the following without using a calculator.

  1. \begin{align*}(2^3)(2^2)\end{align*}
  2. \begin{align*}6^6 \div 6^5\end{align*}
  3. \begin{align*}-(3^2)^3\end{align*}
  4. \begin{align*}(1^2)^3+(1^3)^2\end{align*}
  5. \begin{align*}\left(\frac{1}{3}\right)^6 \div \left(\frac{1}{3}\right)^8\end{align*}

Use the laws of exponents to simplify each of the following.

  1. \begin{align*}(4x)^2\end{align*}
  2. \begin{align*}(-3x)^3\end{align*}
  3. \begin{align*}(x^3)^4\end{align*}
  4. \begin{align*}(3x)(x^7)\end{align*}
  5. \begin{align*}(5x)(4x^4)\end{align*}
  6. \begin{align*}(-3x^2)(-6x^3)\end{align*}
  7. \begin{align*}(10x^8) \div (2x^4)\end{align*}

Simplify each of the following using the laws of exponents.

  1. \begin{align*}5^{\frac{1}{2}} \times 5^{\frac{1}{3}}\end{align*}
  2. \begin{align*}(d^4 e^8 f^{12})^{\frac{1}{4}}\end{align*}
  3. \begin{align*}\sqrt[4]{\frac{y^{\frac{1}{2}} \sqrt{xy}}{x^{\frac{2}{3}}}}\end{align*}
  4. \begin{align*}(32a^{20}b^{-15})^{\frac{1}{5}}\end{align*}
  5. \begin{align*}(729x^{12}y^{-6})^{\frac{2}{3}}\end{align*}

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 6.6. 

Image Attributions

Show Hide Details
Difficulty Level:
Search Keywords:
Date Created:
Apr 30, 2013
Last Modified:
Mar 23, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original

Original text