<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

6.6: Exponential Expressions

Difficulty Level: Advanced Created by: CK-12
Atoms Practice
Estimated12 minsto complete
Practice Evaluating Exponential Expressions
This indicates how strong in your memory this concept is
Estimated12 minsto complete
Estimated12 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Can you simplify the following expression so that it has only positive exponents? 


Exponential Expressions

Here is a summary of all the Laws of Exponents that have been covered so far:

Laws of Exponents

If \begin{align*}a \in R, a \ge 0\end{align*} and \begin{align*}m, n \in Q\end{align*}, then

  1. \begin{align*}a^m \times a^n=a^{m+n}\end{align*}
  2. \begin{align*}\frac{a^m}{a^n}=a^{m-n} \ (\text{if} \ m > n, a \neq 0)\end{align*}
  3. \begin{align*}(a^m)^n=a^{mn}\end{align*}
  4. \begin{align*}(ab)^n=a^nb^n\end{align*}
  5. \begin{align*}\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \ (b \neq 0)\end{align*}
  6. \begin{align*}a^0=1 \ (a \neq 0)\end{align*}
  7. \begin{align*}a^{-m}=\frac{1}{a^m}\end{align*}
  8. \begin{align*}a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m\end{align*}

Now, applying the Laws of Exponents, let's evaluate and simplify the following expressions:

  1. \begin{align*}81^{-\frac{1}{4}}\end{align*}

First, rewrite with a positive exponent:


Next, evaluate the fractional exponent:


  1. \begin{align*}(4x^3 y) (3x^5 y^2 )^4 \end{align*}

\begin{align*}(4x^3 y) (3x^5 y^2 )^4&=(4x^3 y) (81x^{20} y^8 )\\ & =324x^{23}y^9\end{align*}

  1. \begin{align*}\left(\frac{x^{-2}y}{x^4y^3}\right)^{-2}\end{align*}

\begin{align*}\left(\frac{x^{-2}y}{x^4y^3}\right)^{-2}&=\left(\frac{x^4y^3}{x^{-2}y}\right)^{2}\\ &=(x^6y^2)^{2}\\ &=x^{12}y^4\end{align*}


Example 1

Earlier, you were asked to simplify the following expression:


\begin{align*}\frac{8x^3y^{-2}}{(-4x^2y^4)^{-2}}&=(8x^3y^{-2})(-4x^2y^4)^2\\ &=(8x^3y^{-2})(16x^4y^8) \\ &=8\cdot 16 \cdot x^3 \cdot x^4 \cdot y^{-2} \cdot y^8\\ &=128x^7y^6\end{align*}

Example 2

Use the Laws of Exponents to simplify the following:

 \begin{align*}(-2x)^5 (2x^2)\end{align*}

 \begin{align*}(-2x)^5 (2x^2)=(-32x^5)(2x^2)=-64x^7\end{align*}

Example 3

Use the Laws of Exponents to simplify the following: 

\begin{align*}(16x^{10}) \left(\frac{3}{4}x^5\right)\end{align*}

\begin{align*}(16x^{10}) \left(\frac{3}{4}x^5\right)=12x^{15}\end{align*}

Example 4

Use the Laws of Exponents to simplify the following: 




Simplify each expression.

  1. \begin{align*}(x^{10}) (x^{10})\end{align*}
  2. \begin{align*}(7x^3)(3x^7)\end{align*}
  3. \begin{align*}(x^3 y^2) (xy^3) (x^5 y)\end{align*}
  4. \begin{align*}\frac{(x^3)(x^2)}{(x^4)}\end{align*}
  5. \begin{align*}\frac{x^2}{x^{-3}}\end{align*}
  6. \begin{align*}\frac{x^6 y^8}{x^4 y^{-2}}\end{align*}
  7. \begin{align*}(2x^{12})^3\end{align*}
  8. \begin{align*}(x^5 y^{10})^7\end{align*}
  9. \begin{align*}\left(\frac{2x^{10}}{3y^{20}}\right)^3\end{align*}

Express each of the following as a power of 3. Do not evaluate.

  1. \begin{align*}(3^3)^5\end{align*}
  2. \begin{align*}(3^9)(3^3)\end{align*}
  3. \begin{align*}(9)(3^7)\end{align*}
  4. \begin{align*}9^4\end{align*}
  5. \begin{align*}(9)(27^2)\end{align*}

Apply the laws of exponents to evaluate each of the following without using a calculator.

  1. \begin{align*}(2^3)(2^2)\end{align*}
  2. \begin{align*}6^6 \div 6^5\end{align*}
  3. \begin{align*}-(3^2)^3\end{align*}
  4. \begin{align*}(1^2)^3+(1^3)^2\end{align*}
  5. \begin{align*}\left(\frac{1}{3}\right)^6 \div \left(\frac{1}{3}\right)^8\end{align*}

Use the laws of exponents to simplify each of the following.

  1. \begin{align*}(4x)^2\end{align*}
  2. \begin{align*}(-3x)^3\end{align*}
  3. \begin{align*}(x^3)^4\end{align*}
  4. \begin{align*}(3x)(x^7)\end{align*}
  5. \begin{align*}(5x)(4x^4)\end{align*}
  6. \begin{align*}(-3x^2)(-6x^3)\end{align*}
  7. \begin{align*}(10x^8) \div (2x^4)\end{align*}

Simplify each of the following using the laws of exponents.

  1. \begin{align*}5^{\frac{1}{2}} \times 5^{\frac{1}{3}}\end{align*}
  2. \begin{align*}(d^4 e^8 f^{12})^{\frac{1}{4}}\end{align*}
  3. \begin{align*}\sqrt[4]{\frac{y^{\frac{1}{2}} \sqrt{xy}}{x^{\frac{2}{3}}}}\end{align*}
  4. \begin{align*}(32a^{20}b^{-15})^{\frac{1}{5}}\end{align*}
  5. \begin{align*}(729x^{12}y^{-6})^{\frac{2}{3}}\end{align*}

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.6. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Difficulty Level:
Date Created:
Apr 30, 2013
Last Modified:
Mar 23, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original