<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

6.6: Exponential Expressions

Difficulty Level: Advanced Created by: CK-12
Atoms Practice
Estimated12 minsto complete
%
Progress
Practice Evaluating Exponential Expressions
Practice
Progress
Estimated12 minsto complete
%
Practice Now

Can you simplify the following expression so that it has only positive exponents?

8x3y2(4a2b4)2

Watch This

James Sousa: Simplify Exponential Expressions

Guidance

The following table summarizes all of the rules for exponents.

Laws of Exponents

If aR,a0 and m,nQ, then

  1. am×an=am+n
  2. aman=amn (if m>n,a0)
  3. (am)n=amn
  4. (ab)n=anbn
  5. (ab)n=anbn (b0)
  6. a0=1 (a0)
  7. am=1am
  8. amn=amn=(an)m

Example A

Evaluate 8114.

Solution: First, rewrite with a positive exponent:

8114=18114=(181)14.

Next, evaluate the fractional exponent:

(181)14=1814=13

Example B

Simplify (4x3y)(3x5y2)4.

Solution:

(4x3y)(3x5y2)4=(4x3y)(81x20y8)=324x23y9

Example C

Simplify (x2yx4y3)2.

Solution:

(x2yx4y3)2=(x4y3x2y)2=(x6y2)2=x12y4

Concept Problem Revisited

8x3y2(4x2y4)2=(8x3y2)(4x2y4)2=(8x3y2)(16x4y8)=816x3x4y2y8=128x7y6

Vocabulary

Base
In an algebraic expression, the base is the variable, number, product or quotient, to which the exponent refers. Some examples are: In the expression 25, ‘2’ is the base. In the expression (3y)4, ‘3y’ is the base.
Exponent
In an algebraic expression, the exponent is the number to the upper right of the base that tells how many times to multiply the base times itself. Some examples are:
In the expression 25, ‘5’ is the exponent. It means to multiply 2 times itself 5 times as shown here: 25=2×2×2×2×2.
In the expression (3y)4, ‘4’ is the exponent. It means to multiply 3y times itself 4 times as shown here: (3y)4=3y×3y×3y×3y.
Laws of Exponents
The laws of exponents are the algebra rules and formulas that tell us the operation to perform on the exponents when dealing with exponential expressions.

Guided Practice

Use the laws of exponents to simplify each of the following:

1. (2x)5(2x2)

2. (16x10)(34x5)

3. (x15)(x24)(x25)(x7)8

Answers:

1. (2x)5(2x2)=(32x5)(2x2)=64x7

2. (16x10)(34x5)=12x15

3. (x15)(x24)(x25)(x7)8=x64x56=x8

Practice

Simplify each expression.

  1. (x10)(x10)
  2. (7x3)(3x7)
  3. (x3y2)(xy3)(x5y)
  4. (x3)(x2)(x4)
  5. x2x3
  6. x6y8x4y2
  7. (2x12)3
  8. (x5y10)7
  9. (2x103y20)3

Express each of the following as a power of 3. Do not evaluate.

  1. (33)5
  2. (39)(33)
  3. (9)(37)
  4. 94
  5. (9)(272)

Apply the laws of exponents to evaluate each of the following without using a calculator.

  1. (23)(22)
  2. 66÷65
  3. (32)3
  4. (12)3+(13)2
  5. (13)6÷(13)8

Use the laws of exponents to simplify each of the following.

  1. (4x)2
  2. (3x)3
  3. (x3)4
  4. (3x)(x7)
  5. (5x)(4x4)
  6. (3x2)(6x3)
  7. (10x8)÷(2x4)

Simplify each of the following using the laws of exponents.

  1. 512×513
  2. (d4e8f12)14
  3. y12xyx234
  4. (32a20b15)15
  5. (729x12y6)23

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 6.6. 

Image Attributions

Description

Difficulty Level:

Advanced

Search Keywords:

Grades:

Date Created:

Apr 30, 2013

Last Modified:

Oct 19, 2015
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.722.3.L.2

Original text