<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

10.4: Use Square Roots to Solve Quadratic Equations

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated12 minsto complete
%
Progress
Practice Use Square Roots to Solve Quadratic Equations
Practice
Progress
Estimated12 minsto complete
%
Practice Now
Turn In

What if you had a quadratic equation like 4x29=0 in which both terms were perfect squares? How could you solve such an equation? After completing this Concept, you'll be able to solve quadratic equations like this one that involve perfect squares.

Watch This

CK-12 Foundation: 1004S Solving Quadratic Equations Using Square Roots

Guidance

So far you know how to solve quadratic equations by factoring. However, this method works only if a quadratic polynomial can be factored. In the real world, most quadratics can’t be factored, so now we’ll start to learn other methods we can use to solve them. In this Concept, we’ll examine equations in which we can take the square root of both sides of the equation in order to arrive at the result.

Solve Quadratic Equations Involving Perfect Squares

Let’s first examine quadratic equations of the type

x2c=0

We can solve this equation by isolating the x2 term: x2=c

Once the x2 term is isolated we can take the square root of both sides of the equation. Remember that when we take the square root we get two answers: the positive square root and the negative square root:

x=candx=c

Often this is written as x=±c.

Example A

Solve the following quadratic equations:

a) x24=0

b) x225=0

Solution

a) x24=0

Isolate the x2: x2=4

Take the square root of both sides: x=4 and x=4

The solutions are x=2 and x=2.

b) x225=0

Isolate the x2: x2=25

Take the square root of both sides: x=25 and x=25

The solutions are x=5 and x=5.

We can also find the solution using the square root when the x2 term is multiplied by a constant—in other words, when the equation takes the form

ax2c=0

We just have to isolate the x2:

ax2x2=b=ba

Then we can take the square root of both sides of the equation:

x=baandx=ba

Often this is written as: x=±ba.

Example B

Solve the following quadratic equations.

a) 9x216=0

b) 81x21=0

Solution

a) 9x216=0

Isolate the x2:

9x2x2=16=169

Take the square root of both sides: x=169 and x=169

Answer: x=43 and x=43

b) 81x21=0

Isolate the x2:

81x2x2=1=181 Take the square root of both sides: x=181 and x=181

Answer: x=19 and x=19

As you’ve seen previously, some quadratic equations have no real solutions.

Example C

Solve the following quadratic equations.

a) x2+1=0

b) 4x2+9=0

Solution

a) x2+1=0

Isolate the x2: x2=1

Take the square root of both sides: \begin{align*} x = \sqrt{-1}\end{align*} and \begin{align*}x = - \sqrt{-1}\end{align*}

Square roots of negative numbers do not give real number results, so there are no real solutions to this equation.

b) \begin{align*} 4x^2 + 9 = 0\end{align*}

Isolate the \begin{align*}x^2\end{align*}:

\begin{align*}4x^2 & = -9\\ x^2 & = - \frac{9}{4}\end{align*} Take the square root of both sides: \begin{align*}x = \sqrt{ - \frac{9}{4}}\end{align*} and \begin{align*}x = - \sqrt{ - \frac{9}{4}}\end{align*}

There are no real solutions.

We can also use the square root function in some quadratic equations where both sides of an equation are perfect squares. This is true if an equation is of this form:

\begin{align*}(x - 2)^2 = 9\end{align*}

Both sides of the equation are perfect squares. We take the square root of both sides and end up with two equations: \begin{align*}x - 2 = 3\end{align*} and \begin{align*} x - 2 = -3\end{align*}.

Solving both equations gives us \begin{align*}x = 5\end{align*} and \begin{align*}x = -1\end{align*}.

Example D

Solve the following quadratic equations.

a) \begin{align*}(x - 1)^2 = 4\end{align*}

b) \begin{align*}(x + 3)^2 = 1\end{align*}

Solution

a) \begin{align*}(x - 1)^2 = 4\end{align*}

\begin{align*}\text{Take the square root of both sides}: & & x - 1 & = 2 \ \text{and} \ x - 1 = -2\\ \text{Solve each equation}: & & x & = 3 \ \text{and} \ x = -1\end{align*}

Answer: \begin{align*}x =3\end{align*} and \begin{align*}x = -1\end{align*}

b) \begin{align*}(x + 3)^2 = 1\end{align*}

\begin{align*}\text{Take the square root of both sides}: & & x + 3 & = 1 \ \text{and} \ x + 3 = -1\\ \text{Solve each equation}: & & x & = -2 \ \text{and} \ x = -4\end{align*}

Answer: \begin{align*}x = -2\end{align*} and \begin{align*}x = -4\end{align*}

It might be necessary to factor the right-hand side of the equation as a perfect square before applying the method outlined above.

Watch this video for help with the Examples above.

CK-12 Foundation: 1004 Solving Quadratic Equations Using Square Roots

Vocabulary

  • The solutions of a quadratic equation are often called the roots or zeros.

Guided Practice

Solve the following quadratic equations.

a) \begin{align*}x^2 + 8x + 16 = 25\end{align*}

b) \begin{align*}4x^2 - 40x + 25 = 9\end{align*}

Solution

a) \begin{align*}x^2 + 8x + 16 = 25\end{align*}

\begin{align*}& \text{Factor the right-hand-side}: & & x^2 + 8x + 16 = (x + 4)^2 \quad \text{so} \quad (x + 4)^2 = 25\\ & \text{Take the square root of both sides}: & & x + 4 = 5 \ \text{and} \ x + 4 = -5 \\ & \text{Solve each equation}: & & x = 1 \ \text{and} \ x = -9 \end{align*}

Answer: \begin{align*}x = 1\end{align*} and \begin{align*}x = -9\end{align*}

b) \begin{align*}4x^2 - 20x + 25 = 9\end{align*}

\begin{align*}& \text{Factor the right-hand-side}: & & 4x^2 - 20x + 25 = (2x - 5)^2 \quad \text{so} \quad (2x - 5)^2 = 9\\ & \text{Take the square root of both sides}: & & 2x - 5 = 3 \ \text{and} \ 2x - 5 = -3 \\ & \text{Solve each equation}: & & 2x = 8 \ \text{and} \ 2x = 2 \end{align*}

Answer: \begin{align*}x = 4\end{align*} and \begin{align*} x =1\end{align*}

Practice

Solve the following quadratic equations.

  1. \begin{align*}x^2 - 1 = 0\end{align*}
  2. \begin{align*}x^2 - 100 = 0\end{align*}
  3. \begin{align*}x^2 + 16 = 0\end{align*}
  4. \begin{align*}9x^2 - 1 = 0\end{align*}
  5. \begin{align*}4x^2 - 49 = 0\end{align*}
  6. \begin{align*}64x^2 - 9 = 0\end{align*}
  7. \begin{align*}x^2 - 81 = 0\end{align*}
  8. \begin{align*}25x^2 - 36 = 0\end{align*}
  9. \begin{align*}x^2 + 9 = 0\end{align*}
  10. \begin{align*}x^2 - 16 = 0\end{align*}
  11. \begin{align*}x^2 - 36 = 0\end{align*}
  12. \begin{align*}16x^2 - 49 = 0\end{align*}
  13. \begin{align*}(x - 2)^2 = 1\end{align*}
  14. \begin{align*}(x + 5)^2 = 16\end{align*}
  15. \begin{align*}(2x - 1)^2 - 4 = 0\end{align*}
  16. \begin{align*}(3x + 4)^2 = 9\end{align*}
  17. \begin{align*}(x - 3)^2 + 25 = 0\end{align*}
  18. \begin{align*}x^2 - 10x + 25 =9\end{align*}
  19. \begin{align*}x^2 + 18x + 81 = 1\end{align*}
  20. \begin{align*}4x^2 - 12x + 9 = 16\end{align*}
  21. \begin{align*}2(x + 3)^2 = 8\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Vocabulary

Perfect Square

A perfect square is a number whose square root is an integer.

Roots

The roots of a function are the values of x that make y equal to zero.

Zeroes

The zeroes of a function f(x) are the values of x that cause f(x) to be equal to zero.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Oct 01, 2012
Last Modified:
Apr 11, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.912.L.2
Here