6.10: Absolute Value Inequalities
What if you were given an absolute value inequality like
Watch This
CK12 Foundation: 0610S Absolute Value Inequalities (H264)
Guidance
Absolute value inequalities are solved in a similar way to absolute value equations. In both cases, you must consider the same two options:
 The expression inside the absolute value is not negative.
 The expression inside the absolute value is negative.
Then you must solve each inequality separately.
Solve Absolute Value Inequalities
Consider the inequality
Notice that this is also the graph for the compound inequality
Now consider the inequality
Notice that this is also the graph for the compound inequality
Example A
Solve the following inequalities and show the solution graph.
a)
b)
Solution
a)
This answer can be written as “
b)
This answer can be written as “
Rewrite and Solve Absolute Value Inequalities as Compound Inequalities
In the last section you saw that absolute value inequalities are compound inequalities.
Inequalities of the type
Inequalities of the type
To solve an absolute value inequality, we separate the expression into two inequalities and solve each of them individually.
Example B
Solve the inequality
Solution
Rewrite as a compound inequality:
Write as two separate inequalities:
Solve each inequality:
Rewrite solution:
The solution graph is
We can think of the question being asked here as “What numbers are within 7 units of 3?”; the answer can then be expressed as “All the numbers between 4 and 10.”
Example C
Solve the inequality
Solution
Rewrite as a compound inequality:
Write as two separate inequalities:
Solve each inequality:
Rewrite solution:
The solution graph is
Example D
Solve the inequality
Solution
Rewrite as a compound inequality:
Solve each inequality:
The solution graph is
Solve RealWorld Problems Using Absolute Value Inequalities
Absolute value inequalities are useful in problems where we are dealing with a range of values.
Example E
The velocity of an object is given by the formula
Solution
The magnitude of the velocity is the absolute value of the velocity. If the velocity is
First we have to split it up:
Then solve:
\begin{align*}t \ge 5.6\end{align*} or \begin{align*}t \le 0.8\end{align*}
The magnitude of the velocity is greater than 60 ft/sec for times less than 0.8 seconds and for times greater than 5.6 seconds.
When \begin{align*}t = 0.8 \ seconds, \ v=25(0.8)80 = 60 \ ft/sec\end{align*}. The magnitude of the velocity is 60 ft/sec. (The negative sign in the answer means that the object is moving backwards.)
When \begin{align*}t = 5.6 \ seconds, \ v=25(5.6)80 = 60 \ ft/sec\end{align*}.
To find where the magnitude of the velocity is greater than 60 ft/sec, check some arbitrary values in each of the following time intervals: \begin{align*}t \le 0.8, \ 0.8 \le t \le 5.6\end{align*} and \begin{align*}t \ge 5.6\end{align*}.
Check \begin{align*}t = 0.5: \ v=25(0.5) 80 = 67.5 \ ft/sec\end{align*}
Check \begin{align*}t = 2: \ v = 25(2)80 =30 \ ft/sec\end{align*}
Check \begin{align*}t = 6: \ v=25(6)80 = 70 \ ft/sec\end{align*}
You can see that the magnitude of the velocity is greater than 60 ft/sec only when \begin{align*}t \ge 5.6\end{align*} or when \begin{align*}t \le 0.8\end{align*}.
The answer checks out.
Watch this video for help with the Examples above.
CK12 Foundation: Absolute Value Inequalities
Vocabulary
 The absolute value of a number is its distance from zero on a number line.
 \begin{align*}x=x\end{align*} if \begin{align*}x\end{align*} is not negative, and \begin{align*}x=x\end{align*} if \begin{align*}x\end{align*} is negative.
 An equation or inequality with an absolute value in it splits into two equations, one where the expression inside the absolute value sign is positive and one where it is negative. When the expression within the absolute value is positive, then the absolute value signs do nothing and can be omitted. When the expression within the absolute value is negative, then the expression within the absolute value signs must be negated before removing the signs.
 Inequalities of the type \begin{align*}x<a\end{align*} can be rewritten as “\begin{align*}a < x < a\end{align*}.”
 Inequalities of the type \begin{align*}x>b\end{align*} can be rewritten as “\begin{align*}x < b\end{align*} or \begin{align*}x > b\end{align*}.”
Guided Practice
Solve the inequality \begin{align*}8x15 \ge 9\end{align*} and show the solution graph.
Solution
Rewrite as a compound inequality: \begin{align*}8x15 \le 9\end{align*} or \begin{align*}8x15 \ge 9\end{align*}
Solve each inequality: \begin{align*}8x \le 6\end{align*} or \begin{align*}8x \ge 24\end{align*}
\begin{align*}x \le \frac{3}{4}\end{align*} or \begin{align*}x \ge 3\end{align*}
The solution graph is
Practice
Solve the following inequalities and show the solution graph.
 \begin{align*}x \le 6\end{align*}
 \begin{align*}x > 3.5\end{align*}
 \begin{align*}x < 12\end{align*}
 \begin{align*}x > 10\end{align*}
 \begin{align*}7x \ge 21\end{align*}
 \begin{align*}x5 > 8\end{align*}
 \begin{align*}x+7 < 3\end{align*}
 \begin{align*}\left  x\frac{3}{4} \right  \le \frac{1}{2}\end{align*}
 \begin{align*}2x5 \ge 13\end{align*}
 \begin{align*}5x+3 < 7\end{align*}
 \begin{align*}\left  \frac{x}{3}4 \right  \le 2\end{align*}

\begin{align*}\left  \frac{2x}{7}+9 \right  > \frac{5}{7}\end{align*}
 How many solutions does the inequality \begin{align*}x \le 0\end{align*} have?
 How about the inequality \begin{align*}x \ge 0\end{align*}?
 A company manufactures rulers. Their 12inch rulers pass quality control if they are within \begin{align*}\frac{1}{32} \ inches\end{align*} of the ideal length. What is the longest and shortest ruler that can leave the factory?
 A three month old baby boy weighs an average of 13 pounds. He is considered healthy if he is at most 2.5 lbs. more or less than the average weight. Find the weight range that is considered healthy for three month old boys.
Notes/Highlights Having trouble? Report an issue.
Color  Highlighted Text  Notes  

Show More 
Image Attributions
Here you'll learn how to solve absolute value inequalities and show their solution graph. You'll also solve realworld problems involving absolute value inequalities.