<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Algebra I Concepts Go to the latest version.

11.4: Simplification of Radical Expressions

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated13 minsto complete
%
Progress
Practice Simplification of Radical Expressions
Practice
Progress
Estimated13 minsto complete
%
Practice Now

What if you wanted to perform an operation on two radical expressions, like 32x8x, in which the numbers under the radical signs were different? How could you find the difference? After completing this Concept, you'll be able to add, subtract, multiply, and divide radical expressions.

Watch This

CK-12 Foundation: Radical Expressions

Guidance

When we add and subtract radical expressions, we can combine radical terms only when they have the same expression under the radical sign. This is a lot like combining like terms in variable expressions.

Example A

Simplify the following expressions as much as possible.

a.) 42+52

b.) 232+53+102

42+52232+53+102=92or=73+92

It’s important to reduce all radicals to their simplest form in order to make sure that we’re combining all possible like terms in the expression. For example, the expression 8250 looks like it can’t be simplified any more because it has no like terms. However, when we write each radical in its simplest form we get 22102, and we can combine those terms to get 82.

Example B

Simplify the following expressions as much as possible.

a) 412832503

b) 3x34x9x

Solution

a)

Re-write radicals in simplest terms:Combine like terms:=4264321253=1623523=1123

b)

Re-write radicals in simplest terms:Combine like terms:3x2x12xx=3xx12xx=9xx

Multiply Radical Expressions

When we multiply radical expressions, we use the “raising a product to a power” rule: xym=xmym. In this case we apply this rule in reverse.

Example C

Simplify the expression

68
.

Solution:

68=68=48

Or, in simplest radical form: 48=163=43.

We’ll also make use of the fact that: aa=a2=a.

When we multiply expressions that have numbers on both the outside and inside the radical sign, we treat the numbers outside the radical sign and the numbers inside the radical sign separately. For example, abcd=acbd.

Example D

Multiply the following expressions.

a) 2(3+5)

b) 2x(3yx)

c) (2+5)(26)

d) (2x+1)(5x)

Solution

In each case we use distribution to eliminate the parentheses.

a)

Distribute 2 inside the parentheses:Use the ``raising a product to a power'' rule:Simplify:2(3+5)=23+25=23+25=6+10
b)
Distribute 2x inside the parentheses:Multiply:Simplify:=(23)(xy)2(xx)=6xy2x2=6xy2x
c)
Distribute:Simplify:(2+5)(26)=(22)(26)+(25)(56)=426+2530
d)
Distribute:Simplify:(2x1)(5x)=10x2x5+x=11x2x5

Rationalize the Denominator

Often when we work with radicals, we end up with a radical expression in the denominator of a fraction. It’s traditional to write our fractions in a form that doesn’t have radicals in the denominator, so we use a process called rationalizing the denominator to eliminate them.

Rationalizing is easiest when there’s just a radical and nothing else in the denominator, as in the fraction 23. All we have to do then is multiply the numerator and denominator by a radical expression that makes the expression inside the radical into a perfect square, cube, or whatever power is appropriate. In the example above, we multiply by 3:

2333=233

Cube roots and higher are a little trickier than square roots.

Example E

How would we rationalize 753?

Solution:

We can’t just multiply by 53, because then the denominator would be 523. To make the denominator a whole number, we need to multiply the numerator and the denominator by 523:

753523523=7253533=72535

Trickier still is when the expression in the denominator contains more than one term.

Example F

Consider the expression 22+3. We can’t just multiply by 3, because we’d have to distribute that term and then the denominator would be 23+3.

Instead, we multiply by 23. This is a good choice because the product (2+3)(23) is a product of a sum and a difference, which means it’s a difference of squares. The radicals cancel each other out when we multiply out, and the denominator works out to (2+3)(23)=22(3)2=43=1.

When we multiply both the numerator and denominator by 23, we get:

22+32323=2(23)43=4231=423

Now consider the expression x1x2y.

In order to eliminate the radical expressions in the denominator we must multiply by x+2y.

We get: x1x2yx+2yx+2y=(x1)(x+2y)(x2y)(x+2y)=x2yx+2xyx4y

Watch this video for help with the Examples above.

CK-12 Foundation: Radical Expressions

Vocabulary

  • When we multiply radical expressions, we use the “raising a product to a power” rule:

xym=xmym.

  • When we multiply expressions that have numbers on both the outside and inside the radical sign, we treat the numbers outside the radical sign and the numbers inside the radical sign separately:

abcd=acbd

Guided Practice

Simplify the following expressions as much as possible.

a) 43+212

b) 102428

Solutions:

a)

Simplify 12 to its simplest form:Combine like terms:=43+243=43+63=103

b)

Simplify 24 and 28 to their simplest form:There are no like terms.=106474=20627

Practice

Simplify the following expressions as much as possible.

  1. 38632
  2. 180+405
  3. 627+254+348
  4. 8x34x98x
  5. 48a+27a
  6. 4x33+x2563

Multiply the following expressions.

  1. 6(10+8)
  2. (ab)(a+b)
  3. (2x+5)(2x+5)

Rationalize the denominator.

  1. 75
  2. 910
  3. 2x5x
  4. 53y
  5. 1225
  6. 6+343
  7. x2+x
  8. 5y2y5

Vocabulary

Radical Expression

Radical Expression

A radical expression is an expression with numbers, operations and radicals in it.
Rationalize the denominator

Rationalize the denominator

To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.
Variable Expression

Variable Expression

A variable expression is a mathematical phrase that contains at least one variable or unknown quantity.

Image Attributions

Description

Difficulty Level:

At Grade

Grades:

Date Created:

Aug 13, 2012

Last Modified:

Dec 15, 2015
Files can only be attached to the latest version of Modality

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.831.L.2

Original text