# 12.8: Multiplication of Rational Expressions

Difficulty Level: At Grade Created by: CK-12
Estimated19 minsto complete
%
Progress
Practice Multiplication of Rational Expressions

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated19 minsto complete
%
Estimated19 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

What if you had two rational expressions like 2x23x4\begin{align*}\frac{2x^2 - 3}{x - 4}\end{align*} and x23x+2x2\begin{align*}\frac{x^2 - 3x + 2}{x^2}\end{align*} and you wanted to multiply them? How could you do so such that the answer were in simplest terms? After completig this Concept, you'll be able to multiply rational expressions like this one.

### Guidance

The rules for multiplying and dividing rational expressions are the same as the rules for multiplying and dividing rational numbers, so let’s start by reviewing multiplication and division of fractions. When we multiply two fractions we multiply the numerators and denominators separately:

abcd=acbd\begin{align*}\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}\end{align*}

Multiply Rational Expressions Involving Monomials

#### Example A

Multiply the following: a16b84b35a2\begin{align*}\frac{a}{16b^8} \cdot \frac{4b^3}{5a^2}\end{align*}.

Solution

Cancel common factors from the numerator and denominator. The common factors are 4, a\begin{align*}a\end{align*}, and b3\begin{align*}b^3\end{align*}. Canceling them out leaves 14b515a=120ab5\begin{align*}\frac{1}{4b^5} \cdot \frac{1}{5a} = \frac{1}{20ab^5}\end{align*}.

#### Example B

Multiply \begin{align*}9x^2 \cdot \frac{4y^2}{21x^4}\end{align*}.

Solution

Rewrite the problem as a product of two fractions: \begin{align*}\frac{9x^2}{1} \cdot \frac{4y^2}{21x^4}\end{align*} Then cancel common factors from the numerator and denominator.

The common factors are 3 and \begin{align*}x^2\end{align*}. Canceling them out leaves \begin{align*}\frac{3}{1} \cdot \frac{4y^2}{7x^2} = \frac{12y^2}{7x^2}\end{align*}.

Multiply Rational Expressions Involving Polynomials

When multiplying rational expressions involving polynomials, first we need to factor all polynomial expressions as much as we can. Then we follow the same procedure as before.

#### Example C

Multiply \begin{align*}\frac{4x+12}{3x^2} \cdot \frac{x}{x^2-9}\end{align*}.

Solution

Factor all polynomial expressions as much as possible: \begin{align*}\frac{4(x+3)}{3x^2} \cdot \frac{x}{(x+3)(x-3)}\end{align*}

The common factors are \begin{align*}x\end{align*} and \begin{align*}(x + 3)\end{align*}. Canceling them leaves \begin{align*}\frac{4}{3x} \cdot \frac{1}{(x-3)} = \frac{4}{3x(x-3)} = \frac{4}{3x^2-9x}\end{align*}.

Multiply a Rational Expression by a Polynomial

When we multiply a rational expression by a whole number or a polynomial, we can write the whole number (or polynomial) as a fraction with denominator equal to one. We then proceed the same way as in the previous examples.

#### Example D

Multiply \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot (x^2+3x-10)\end{align*}.

Solution

Rewrite the expression as a product of fractions: \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot \frac{x^2+3x-10}{1}\end{align*}

Factor polynomials: \begin{align*}\frac{3(x+6)}{(x+5)(4x-1)} \cdot \frac{(x-2)(x+5)}{1}\end{align*}

The common factor is \begin{align*}(x + 5)\end{align*}. Canceling it leaves \begin{align*}\frac{3(x+6)}{(4x-1)} \cdot \frac{(x-2)}{1} = \frac{3(x+6)(x-2)}{(4x-1)} = \frac{3x^2+12x-36}{4x-1}\end{align*}

Watch this video for help with the Examples above.

### Vocabulary

• When we multiply two fractions we multiply the numerators and denominators separately:

\begin{align*}\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}\end{align*}

### Guided Practice

Multiply \begin{align*}\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}\end{align*}.

Solution

Factor polynomials: \begin{align*}\frac{(3x+2)(4x-3)}{(x+1)(x-1)} \cdot \frac{(x+1)(x+6)}{(4x-3)(x-6)}\end{align*}.

The common factors are \begin{align*}(x + 1)\end{align*} and \begin{align*}(4x - 3)\end{align*}. Canceling them leaves \begin{align*}\frac{(3x+2)}{(x-1)} \cdot \frac{(x+6)}{(x-6)} = \frac{(3x+2)(x+6)}{(x-1)(x-6)} = \frac{3x^2+20x+12}{x^2-7x+6}\end{align*}

### Practice

Multiply the following rational expressions and reduce the answer to lowest terms.

1. \begin{align*}\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}\end{align*}
2. \begin{align*}\frac{2x}{y^2} \cdot \frac{4y}{5x}\end{align*}
3. \begin{align*}2xy \cdot \frac{2y^2}{x^3}\end{align*}
4. \begin{align*}\frac{4y^2-1}{y^2-9} \cdot \frac{y-3}{2y-1}\end{align*}
5. \begin{align*}\frac{6ab}{a^2} \cdot \frac{a^3b}{3b^2}\end{align*}
6. \begin{align*}\frac{33a^2}{-5} \cdot \frac{20}{11a^3}\end{align*}
7. \begin{align*}\frac{2x^2+2x-24}{x^2+3x} \cdot \frac{x^2+x-6}{x+4}\end{align*}
8. \begin{align*}\frac{x}{x-5} \cdot \frac{x^2-8x+15}{x^2-3x}\end{align*}
9. \begin{align*}\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)\end{align*}
10. \begin{align*}\frac{x^2+7x+10}{x^2-9} \cdot \frac{x^2-3x}{3x^2+4x-4}\end{align*}
11. \begin{align*}\frac{x^2+8x+16}{7x^2+9x+2} \cdot \frac{7x+2}{x^2+4x}\end{align*}

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Rational Expression A rational expression is a fraction with polynomials in the numerator and the denominator.

Show Hide Details
Description
Difficulty Level:
Authors:
Tags:
Subjects:

## Concept Nodes:

Date Created:
Oct 01, 2012
Apr 11, 2016
Image Detail
Sizes: Medium | Original

MAT.ALG.732.1.L.2