<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

12.8: Multiplication of Rational Expressions

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated21 minsto complete
%
Progress
Practice Multiplication of Rational Expressions
Practice
Progress
Estimated21 minsto complete
%
Practice Now

What if you had two rational expressions like \begin{align*}\frac{2x^2 - 3}{x - 4}\end{align*}2x23x4 and \begin{align*}\frac{x^2 - 3x + 2}{x^2}\end{align*}x23x+2x2 and you wanted to multiply them? How could you do so such that the answer were in simplest terms? After completing this Concept, you'll be able to multiply rational expressions like this one.

Watch This

CK-12 Foundation: 1208S Multiplying Rational Expressions

Guidance

The rules for multiplying and dividing rational expressions are the same as the rules for multiplying and dividing rational numbers, so let’s start by reviewing multiplication and division of fractions. When we multiply two fractions we multiply the numerators and denominators separately:

\begin{align*}\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}\end{align*}abcd=acbd

Multiply Rational Expressions Involving Monomials

Example A

Multiply the following: \begin{align*}\frac{a}{16b^8} \cdot \frac{4b^3}{5a^2}\end{align*}a16b84b35a2.

Solution

Cancel common factors from the numerator and denominator. The common factors are 4, \begin{align*}a\end{align*}a, and \begin{align*}b^3\end{align*}b3. Canceling them out leaves \begin{align*}\frac{1}{4b^5} \cdot \frac{1}{5a} = \frac{1}{20ab^5}\end{align*}14b515a=120ab5.

Example B

Multiply \begin{align*}9x^2 \cdot \frac{4y^2}{21x^4}\end{align*}9x24y221x4.

Solution

Rewrite the problem as a product of two fractions: \begin{align*}\frac{9x^2}{1} \cdot \frac{4y^2}{21x^4}\end{align*} Then cancel common factors from the numerator and denominator.

The common factors are 3 and \begin{align*}x^2\end{align*}. Canceling them out leaves \begin{align*}\frac{3}{1} \cdot \frac{4y^2}{7x^2} = \frac{12y^2}{7x^2}\end{align*}.

Multiply Rational Expressions Involving Polynomials

When multiplying rational expressions involving polynomials, first we need to factor all polynomial expressions as much as we can. Then we follow the same procedure as before.

Example C

Multiply \begin{align*}\frac{4x+12}{3x^2} \cdot \frac{x}{x^2-9}\end{align*}.

Solution

Factor all polynomial expressions as much as possible: \begin{align*}\frac{4(x+3)}{3x^2} \cdot \frac{x}{(x+3)(x-3)}\end{align*}

The common factors are \begin{align*}x\end{align*} and \begin{align*}(x + 3)\end{align*}. Canceling them leaves \begin{align*}\frac{4}{3x} \cdot \frac{1}{(x-3)} = \frac{4}{3x(x-3)} = \frac{4}{3x^2-9x}\end{align*}.

Multiply a Rational Expression by a Polynomial

When we multiply a rational expression by a whole number or a polynomial, we can write the whole number (or polynomial) as a fraction with denominator equal to one. We then proceed the same way as in the previous examples.

Example D

Multiply \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot (x^2+3x-10)\end{align*}.

Solution

Rewrite the expression as a product of fractions: \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot \frac{x^2+3x-10}{1}\end{align*}

Factor polynomials: \begin{align*}\frac{3(x+6)}{(x+5)(4x-1)} \cdot \frac{(x-2)(x+5)}{1}\end{align*}

The common factor is \begin{align*}(x + 5)\end{align*}. Canceling it leaves \begin{align*}\frac{3(x+6)}{(4x-1)} \cdot \frac{(x-2)}{1} = \frac{3(x+6)(x-2)}{(4x-1)} = \frac{3x^2+12x-36}{4x-1}\end{align*}

Watch this video for help with the Examples above.

CK-12 Foundation: Multiplying Rational Expressions

Guided Practice

Multiply \begin{align*}\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}\end{align*}.

Solution

Factor polynomials: \begin{align*}\frac{(3x+2)(4x-3)}{(x+1)(x-1)} \cdot \frac{(x+1)(x+6)}{(4x-3)(x-6)}\end{align*}.

The common factors are \begin{align*}(x + 1)\end{align*} and \begin{align*}(4x - 3)\end{align*}. Canceling them leaves \begin{align*}\frac{(3x+2)}{(x-1)} \cdot \frac{(x+6)}{(x-6)} = \frac{(3x+2)(x+6)}{(x-1)(x-6)} = \frac{3x^2+20x+12}{x^2-7x+6}\end{align*}

Explore More

Multiply the following rational expressions and reduce the answer to lowest terms.

  1. \begin{align*}\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}\end{align*}
  2. \begin{align*}\frac{2x}{y^2} \cdot \frac{4y}{5x}\end{align*}
  3. \begin{align*}2xy \cdot \frac{2y^2}{x^3}\end{align*}
  4. \begin{align*}\frac{4y^2-1}{y^2-9} \cdot \frac{y-3}{2y-1}\end{align*}
  5. \begin{align*}\frac{6ab}{a^2} \cdot \frac{a^3b}{3b^2}\end{align*}
  6. \begin{align*}\frac{33a^2}{-5} \cdot \frac{20}{11a^3}\end{align*}
  7. \begin{align*}\frac{2x^2+2x-24}{x^2+3x} \cdot \frac{x^2+x-6}{x+4}\end{align*}
  8. \begin{align*}\frac{x}{x-5} \cdot \frac{x^2-8x+15}{x^2-3x}\end{align*}
  9. \begin{align*}\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)\end{align*}
  10. \begin{align*}\frac{x^2+7x+10}{x^2-9} \cdot \frac{x^2-3x}{3x^2+4x-4}\end{align*}
  11. \begin{align*}\frac{x^2+8x+16}{7x^2+9x+2} \cdot \frac{7x+2}{x^2+4x}\end{align*}

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 12.8. 

Vocabulary

Rational Expression

A rational expression is a fraction with polynomials in the numerator and the denominator.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Oct 01, 2012
Last Modified:
Apr 11, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.732.1.L.2