<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Due to system maintenance, CK-12 will be unavailable on Friday,8/19/2016 from 6:00p.m to 10:00p.m. PT.

12.8: Multiplication of Rational Expressions

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated20 minsto complete
%
Progress
Practice Multiplication of Rational Expressions
Practice
Progress
Estimated20 minsto complete
%
Practice Now
Turn In

Multiplication of Rational Expressions 

The rules for multiplying and dividing rational expressions are the same as the rules for multiplying and dividing rational numbers, so let’s start by reviewing multiplication and division of fractions. When we multiply two fractions we multiply the numerators and denominators separately:

\begin{align*}\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}\end{align*}abcd=acbd

Multiplying Rational Expressions Involving Monomials

1. Multiply the following: \begin{align*}\frac{a}{16b^8} \cdot \frac{4b^3}{5a^2}\end{align*}a16b84b35a2.

Cancel common factors from the numerator and denominator. The common factors are 4, \begin{align*}a\end{align*}a, and \begin{align*}b^3\end{align*}b3. Canceling them out leaves \begin{align*}\frac{1}{4b^5} \cdot \frac{1}{5a} = \frac{1}{20ab^5}\end{align*}14b515a=120ab5.

2. Multiply \begin{align*}9x^2 \cdot \frac{4y^2}{21x^4}\end{align*}9x24y221x4.

Rewrite the problem as a product of two fractions: \begin{align*}\frac{9x^2}{1} \cdot \frac{4y^2}{21x^4}\end{align*}9x214y221x4 Then cancel common factors from the numerator and denominator.

The common factors are 3 and \begin{align*}x^2\end{align*}x2. Canceling them out leaves \begin{align*}\frac{3}{1} \cdot \frac{4y^2}{7x^2} = \frac{12y^2}{7x^2}\end{align*}314y27x2=12y27x2.

Multiplying Rational Expressions Involving Polynomials

When multiplying rational expressions involving polynomials, first we need to factor all polynomial expressions as much as we can. Then we follow the same procedure as before.

Multiply \begin{align*}\frac{4x+12}{3x^2} \cdot \frac{x}{x^2-9}\end{align*}4x+123x2xx29.

Factor all polynomial expressions as much as possible: \begin{align*}\frac{4(x+3)}{3x^2} \cdot \frac{x}{(x+3)(x-3)}\end{align*}4(x+3)3x2x(x+3)(x3)

The common factors are \begin{align*}x\end{align*}x and \begin{align*}(x + 3)\end{align*}(x+3). Canceling them leaves \begin{align*}\frac{4}{3x} \cdot \frac{1}{(x-3)} = \frac{4}{3x(x-3)} = \frac{4}{3x^2-9x}\end{align*}43x1(x3)=43x(x3)=43x29x.

 

Multiplying a Rational Expression by a Polynomial

When we multiply a rational expression by a whole number or a polynomial, we can write the whole number (or polynomial) as a fraction with denominator equal to one. We then proceed the same way as in the previous examples.

Multiply \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot (x^2+3x-10)\end{align*}3x+184x2+19x5(x2+3x10).

Rewrite the expression as a product of fractions: \begin{align*}\frac{3x+18}{4x^2+19x-5} \cdot \frac{x^2+3x-10}{1}\end{align*}3x+184x2+19x5x2+3x101

Factor polynomials: \begin{align*}\frac{3(x+6)}{(x+5)(4x-1)} \cdot \frac{(x-2)(x+5)}{1}\end{align*}3(x+6)(x+5)(4x1)(x2)(x+5)1

The common factor is \begin{align*}(x + 5)\end{align*}(x+5). Canceling it leaves \begin{align*}\frac{3(x+6)}{(4x-1)} \cdot \frac{(x-2)}{1} = \frac{3(x+6)(x-2)}{(4x-1)} = \frac{3x^2+12x-36}{4x-1}\end{align*}3(x+6)(4x1)(x2)1=3(x+6)(x2)(4x1)=3x2+12x364x1

 

 

Example

Example 1

Multiply \begin{align*}\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}\end{align*}12x2x6x21x2+7x+64x227x+18.

Factor polynomials: \begin{align*}\frac{(3x+2)(4x-3)}{(x+1)(x-1)} \cdot \frac{(x+1)(x+6)}{(4x-3)(x-6)}\end{align*}(3x+2)(4x3)(x+1)(x1)(x+1)(x+6)(4x3)(x6).

The common factors are \begin{align*}(x + 1)\end{align*}(x+1) and \begin{align*}(4x - 3)\end{align*}(4x3). Canceling them leaves \begin{align*}\frac{(3x+2)}{(x-1)} \cdot \frac{(x+6)}{(x-6)} = \frac{(3x+2)(x+6)}{(x-1)(x-6)} = \frac{3x^2+20x+12}{x^2-7x+6}\end{align*}(3x+2)(x1)(x+6)(x6)=(3x+2)(x+6)(x1)(x6)=3x2+20x+12x27x+6

Review 

Multiply the following rational expressions and reduce the answer to lowest terms.

  1. \begin{align*}\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}\end{align*}x32y32y2x
  2. \begin{align*}\frac{2x}{y^2} \cdot \frac{4y}{5x}\end{align*}2xy24y5x
  3. \begin{align*}2xy \cdot \frac{2y^2}{x^3}\end{align*}2xy2y2x3
  4. \begin{align*}\frac{4y^2-1}{y^2-9} \cdot \frac{y-3}{2y-1}\end{align*}4y21y29y32y1
  5. \begin{align*}\frac{6ab}{a^2} \cdot \frac{a^3b}{3b^2}\end{align*}6aba2a3b3b2
  6. \begin{align*}\frac{33a^2}{-5} \cdot \frac{20}{11a^3}\end{align*}33a252011a3
  7. \begin{align*}\frac{2x^2+2x-24}{x^2+3x} \cdot \frac{x^2+x-6}{x+4}\end{align*}2x2+2x24x2+3xx2+x6x+4
  8. \begin{align*}\frac{x}{x-5} \cdot \frac{x^2-8x+15}{x^2-3x}\end{align*}xx5x28x+15x23x
  9. \begin{align*}\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)\end{align*}5x2+16x+336x225(6x2+5x)
  10. \begin{align*}\frac{x^2+7x+10}{x^2-9} \cdot \frac{x^2-3x}{3x^2+4x-4}\end{align*}x2+7x+10x29x23x3x2+4x4
  11. \begin{align*}\frac{x^2+8x+16}{7x^2+9x+2} \cdot \frac{7x+2}{x^2+4x}\end{align*}x2+8x+167x2+9x+27x+2x2+4x

Review (Answers)

To view the Review answers, open this PDF file and look for section 12.8. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Vocabulary

Rational Expression

A rational expression is a fraction with polynomials in the numerator and the denominator.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Oct 01, 2012
Last Modified:
Apr 11, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.732.1.L.2
Here