<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

5.3: Quiz I

Difficulty Level: At Grade Created by: CK-12
Turn In

Multiple Choice – Please circle the letter of the correct answer and write that letter in the space provided to the left of each question.

  1. __________ The point (1, 3) is the solution to which of the following system of equations?

(a) \begin{align*}\begin{Bmatrix} x + 3y = 7 \\ -x + 4y = 7 \end{Bmatrix}\end{align*}{x+3y=7x+4y=7}

(b) \begin{align*}\begin{Bmatrix} x + y & = 9 \\ 2x - y = -3 \end{Bmatrix}\end{align*}{x+y2xy=3=9}

(c) \begin{align*}\begin{Bmatrix} 5x - 7y = -16 \\ 2x + 8y = 26 \end{Bmatrix}\end{align*}

(d) \begin{align*}\begin{Bmatrix} 5x - 3y = 24 \\ 3x + 5y = 28 \end{Bmatrix}\end{align*}

  1. __________ What is the solution of the following system of equations?

\begin{align*}\begin{Bmatrix} y = \frac{1}{2}x + 3 \\ y = \frac{1}{6}x + 9 \end{Bmatrix}\end{align*}

(a) (3, 9)

(b) (12, 18)

(c) (-3, -9)

(d) (18, 12)

  1. __________ Which system of linear equations has the following solution?

(a) \begin{align*}\begin{Bmatrix} 2x - 5y = 5 \\ 4x + 2y = 22 \end{Bmatrix}\end{align*}

(b) \begin{align*}\begin{Bmatrix} x - 4y = -16 \\ -4x + 5y = 15 \end{Bmatrix}\end{align*}

(c) \begin{align*}\begin{Bmatrix} x + 3y = -11 \\ 3x + 2y = 30 \end{Bmatrix}\end{align*}

(d) \begin{align*}\begin{Bmatrix} 2x + y - 7 = 0 \\ x - 2y - 1 = 0 \end{Bmatrix}\end{align*}

  1. __________ What is the \begin{align*}x-\end{align*}value for the solution in the following system of equations:

\begin{align*}\begin{Bmatrix} y = 3x + 11 \\ y = -2x - 4 \end{Bmatrix}\end{align*}

(a) \begin{align*}x = -15\end{align*}

(b) \begin{align*}x = 15\end{align*}

(c) \begin{align*}x = 3\end{align*}

(d) \begin{align*}x = -3\end{align*}

  1. __________ What is a system of linear equations that has no solution called?
    1. independent
    2. consistent
    3. inconsistent
    4. dependent
  2. __________ What equation would be used to write equivalent systems for the following system of linear equations?

\begin{align*}\begin{Bmatrix} 3x-6y=-7 \\ 5x+9y=-18 \end{Bmatrix}\end{align*}

(a) \begin{align*}-2x-15y-11=0\end{align*}

(b) \begin{align*}8x+3y+25=0\end{align*}

(c) \begin{align*}8x-3y = 25\end{align*}

(d) \begin{align*}8x + 3y = 25\end{align*}

  1. __________ What is the solution for the following system of equations? \begin{align*}y=\frac{5}{6}x-2\end{align*} and \begin{align*}y=\frac{2}{9}x+9\end{align*}
    1. \begin{align*}l_1 \cap l_2 @ (18,13)\end{align*}
    2. \begin{align*}l_1 \cap l_2 @ \left(1, - \frac{7}{6}\right)\end{align*}
    3. \begin{align*}l_1 \cap l_2 @ (1,13)\end{align*}
    4. \begin{align*}l_1 \cap l_2 @ \left(\frac{5}{6}, \frac{2}{9}\right)\end{align*}
  2. __________ How many solutions are there for a system of linear equations that is consistent and independent?
    1. two
    2. infinite number
    3. one
    4. none

Answer the following questions in the space provided. Show all work.

  1. Solve by substitution:

\begin{align*}\begin{Bmatrix} 2x+y=-1 \\ 3x-2y=9 \end{Bmatrix}\end{align*}

  1. Solve by elimination:

\begin{align*}\begin{Bmatrix} \frac{3}{4}x+\frac{5}{4}y=4 \\ \frac{1}{2}x+\frac{1}{3}y=\frac{5}{3} \end{Bmatrix}\end{align*}

Answers to Quiz I

  1. C
  2. D
  3. A
  4. D
  5. C
  6. B
  7. A
  8. C

\begin{align*}\begin{Bmatrix} 2x+y=-1 \\ 3x-2y=9 \end{Bmatrix}\end{align*}

Solution:

\begin{align*}& 2x+y=-1\\ & 2x-2x+y=-1-2x\\ & \boxed{y=-1-2x}\\ \\ & 3x-2y=9 && 2x+y=-1\\ & 3x-2(-1-2x)=9 && 2(1)+y=-1\\ & 3x+2+4x=9 && 2+y=-1\\ & 7x+2=9 && 2-2+y=-1-2\\ & 7x+2-2=9-2 && \boxed{y=-3}\\ & 7x=7\\ & \frac{7x}{7} =\frac{7}{7}\\ & \frac{\cancel{7}x}{\cancel{7}}=\frac{7}{7}\\ & \boxed{x=1} && \boxed{l_1 \cap l_2 @ (1,-3)}\end{align*}

\begin{align*}\begin{Bmatrix} \frac{3}{4}x+\frac{5}{4}y=4 \\ \frac{1}{2}x+\frac{1}{3}y=\frac{5}{3} \end{Bmatrix}\end{align*}

Solution:

\begin{align*}& \frac{3}{4}x+\frac{5}{4}y=4\\ & 4 \left(\frac{3}{4}x\right)+4 \left(\frac{5}{4}y\right)=4(4)\\ & \cancel{4} \left(\frac{3}{\cancel{4}}x\right)+\cancel{4} \left(\frac{5}{\cancel{4}}y\right)=4(4)\\ & \boxed{3x+5y=16}\\ & \frac{1}{2}x+\frac{1}{3}y=\frac{5}{3}\\ & 6 \left(\frac{1}{2}x\right)+6 \left(\frac{1}{3}y\right)=6 \left(\frac{5}{3}\right)\\ & \overset{3}{\cancel{6}} \left(\frac{1}{\cancel{2}}x\right)+\overset{2}{\cancel{6}}\left(\frac{1}{\cancel{3}}y\right)=\overset{2}{\cancel{6}}\left(\frac{5}{\cancel{3}}\right)\\ & \boxed{3x+2y=10}\\ & 3x+5y=16\\ & 3x+2y=10\\ & -1(3x+5y=16) \rightarrow -{\cancel{3x}}-5y=-16\\ & 3x+2y=10 \rightarrow \qquad \quad \ \underline{\cancel{3x}+2y=10 \;\;\;}\\ & \qquad \qquad \qquad \qquad \qquad \qquad \frac{-3y}{-3}=\frac{-6}{-3}\\ & \qquad \qquad \qquad \qquad \qquad \qquad \quad \ \ {\color{red}y=2}\\ & 3x+2y=10\\ & 3x+2(2)=10\\ & 3x+4=10\\ & 3x+4-4=10-4\\ & 3x=6\\ & \frac{3x}{3}=\frac{6}{3}\\ & {\color{red}x=2} \qquad \qquad \qquad \qquad \boxed{l_1 \cap l_2 @ (2,2)}\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Description
Grades:
Date Created:
Jan 16, 2013
Last Modified:
Jan 14, 2015
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Algebra-I---Honors.5.3
Here