# 6.2: More Laws of Exponents

**At Grade**Created by: CK-12

**Introduction**

In this lesson you will learn more laws of exponents. These laws will include algebraic expressions involving zero exponents and negative exponents.

In addition to learning these laws, you will also learn use them, in conjunction with the laws of exponents you’ve previously learned, to perform various operations with exponential expressions.

**Objectives**

The lesson objectives for More Laws of Exponents:

- Understanding the Zero Exponent
- Negative Exponents
- Integrating all the Laws of Exponents

## Zero and Negative Exponents

**Introduction**

The term has been defined if and , but what meaning does have if or if ? These possibilities must be closely examined. The second law of exponents that dealt with dividing two powers was:

If , then the following would be true:

However, any quantity divided by itself is equal to one.

Therefore,

which means

Likewise,

However if is not defined. The reason is based on the fact that division by zero is undefined.

This concept will be used determine if the other laws of exponents are true for integral exponents.

**Watch This**

Khan Academy Level 2 Exponents

Khan Academy Negative Exponent Intuition

**Guidance**

The first law of exponents must also be true if and .

This first law of exponents must also be true for negative exponents.

Therefore,

This law for negative exponents can be expressed in many ways:

- If a term has a negative exponent, write it as 1 over the term with a positive exponent. For example: and
- If a term has a negative exponent, write the reciprocal with a positive exponent. For example: and
- If the term is a factor in the numerator with a negative exponent, write it in the denominator with a positive exponent. For example: and
- If the term is a factor in the denominator with a negative exponent, write it in the numerator with a positive exponent. For example: and

These expressions for understanding negative exponents all use the rules and and they provide shortcuts for arriving at the solution without doing all of the tedious calculations. The results will be the same.

With these definitions, it can be shown that the five laws of exponents are true for any integer exponents. For example, the law for raising a product to a power is true.

You should be able to use these definitions to prove the remaining laws of exponents.

The following table will summarize the laws of exponents for integral exponents.

Laws of Exponents for Integral Exponents

If and , then

1.

2.

3.

4.

5.

6.

7.

**Example A**

Evaluate the following using the laws of exponents.

**Answer**

There are two methods that can be used to evaluate the problem.

**Method 1: Apply the law of exponents**

**Method 2: Apply the shortcut and write the reciprocal with a positive exponent.**

Applying the shortcut facilitates the process for obtaining the solution.

**Example B**

State the following using only positive exponents: (If possible, use shortcuts)

i)

ii)

iii)

iv)

**Answers**

i)

ii)

iii)

iv)

**Example C**

Evaluate the following:

**Answer**

There are two methods that can be used to evaluate the problem.

**Method 1: Work with the terms in the problem in exponential form.**

Numerator:

Denominator:

Numerator and Denominator:

**Method 2: Multiply the numerator and the denominator by . This will change all negative exponents to positive exponents. Apply the first law of exponents and work with the terms in exponential form.**

Whichever method is used, the result is the same.

**Example D**

Evaluate the following using the laws of exponents:

**Guided Practice**

- Use the laws of exponents to simplify the following:
- Rewrite the following using only positive exponents.
- Use the laws of exponents to evaluate the following:

**Answers**

1.

2.

3.

**Summary**

In this lesson you have learned more laws of exponents. You have learned the laws of exponents that involve exponents that belong to the integer number system. The two laws that were presented were if and . These laws were used with the laws that you had previously learned to evaluate exponential expressions, to simplify exponential expressions and to perform indicated operations with exponential expressions.

**Problem Set**

**Evaluate each of the following expressions:**

**Simplify the following:**

**Rewrite the following using positive exponents only. Simplify where possible.**

**Answers**

**Evaluate each of...**

**Simplify the following...**

**Rewrite the following...**

## Rational Exponents

**Introduction**

In this lesson you will learn about rational exponents. So far, where has been defined where and where . Now you will learn that it is possible to define where the exponent is a rational number, such as or .

In addition to learning this law of exponents, you will also learn use them, in conjunction with the laws of exponents you’ve previously learned, to perform various operations with exponential expressions.

**Objectives**

The lesson objectives for More Laws of Exponents:

- Rational exponents.
- Simplifying and Evaluating expressions with rational exponents.
- Integrating all the Laws of Exponents.

**Introduction**

In the law of exponents for raising a power to a power , can be substituted for the rational number to give . Therefore, . If , the th root of both sides of the equation can be taken to give:

If ‘’ is an even number, then the value of ‘’ must be greater than or equal to zero. If ‘’ is an odd number, then the value of ‘’ can be any real number.

Using this concept, the following law of exponents can be written for rational exponents.

**Watch This**

Khan Academy Level 3 Exponents

**Guidance**

To determine the value of , there are several methods that can be applied.

These methods refer back to the concepts presented in this lesson.

i)

‘3’ is the exponent and ‘2’ is the index. Remember the index tells what root to find. The ‘2’ is understood and is never written when the operation is to take the square root of a number or term.

Therefore, .

ii)

Therefore, .

iii)

Therefore, .

iv)

Therefore, .

The following table will summarize the laws of exponents for rational exponents.

Laws of Exponents for Rational Exponents

If and , then

**Example A**

Simplify the following:

**Answer**

The cube root of 125 is ‘**5**’.

Evaluate the denominator.

**Example B**

Simplify the following:

**Answers**

**Example C**

The rational exponents represent the exponent and the index of the base. The numerator is the exponent and the denominator is the index.

a) State the following using radicals:

i)

ii)

iii)

b) State the following using exponents:

i)

ii)

iii)

**Answers**

a) i)

ii)

iii)

b) i)

ii)

iii)

**Guided Practice**

- Use the laws of exponents to evaluate the following:
- Simplify the following using the laws of exponents.
- Use the laws of exponents to evaluate the following:

**Answers**

1.

Apply the law of exponents for rational exponents to .

Apply the law of exponents for negative exponents to .

2.

Apply the law of exponents for rational exponents to and . To , apply the law for negative exponents and then the law for rational exponents.

3. Try this question yourself.

**Numerator divided by denominator:**

**Summary**

In this lesson you have learned more laws of exponents. You have learned the laws of exponents that involve exponents that belong to the rational number system. The new law that was presented was the law for rational exponents: This law was used with the laws that you had previously learned to evaluate exponential expressions, to simplify exponential expressions and to perform indicated operations with exponential expressions.

**Problem Set**

**Express each of the following as a radical and if possible, simplify.**

**Express each of the following using exponents:**

**Evaluate each of the following using the laws of exponents:**

**Simplify each of the following using the laws of exponents:**

**Answers**

**Express each of the following...**

**Express each of the following...**

**Evaluate each of the following...**

**Simplify each of the following...**