<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Due to system maintenance, CK-12 will be unavailable on 8/19/2016 from 6:00p.m to 10:00p.m. PT.

2.6: Division of Rational Numbers

Difficulty Level: At Grade Created by: CK-12
Turn In

Learning Objectives

  • Find multiplicative inverses.
  • Divide rational numbers.
  • Solve real-world problems using division.

Introduction – Identity elements

An identity element is a number which, when combined with a mathematical operation on a number, leaves that number unchanged. For addition and subtraction, the identity element is zero.

2+05+0990=2=5=99

The inverse operation of addition is subtraction.

x+55=xWhen we subtract what we have added, we get back to where we started!

When you add a number to its opposite, you get the identity element for addition.

5+(5)=0

You can see that the addition of an opposite is an equivalent operation to subtraction.

For multiplication and division, the identity element is one.

2×15×199÷1=2=5=99

In this lesson, we will learn about multiplying by a multiplicative inverse as an equivalent operation to division. Just as we can use opposites to turn a subtraction problem into an addition problem, we can use reciprocals to turn a division problem into a multiplication problem.

Find Multiplicative Inverses

The multiplicative inverse of a number, x, is the number when multiplied by x yields one. In other words, any number times the multiplicative inverse of that number equals one. The multiplicative inverse is commonly the reciprocal, and the multiplicative inverse of x is denoted by 1x.

Look at the following multiplication problem:

Simplify 23×32

We know that we can cancel terms that appear on both the numerator and the denominator. Remember we leave a one when we cancel all terms on either the numerator or denominator!

23×32=23×32=1

It is clear that 23 is the multiplicative inverse of 32. Here is the rule.

To find the multiplicative inverse of a rational number, we simply invert the fraction.

The multiplicative inverse of ab is ba, as long as a0

Example 1

Find the multiplicative inverse of each of the following.

a) 37

b) 47

c) 312

d) xy

e) 111

a) Solution

The multiplicative inverse of 37 is 73.

b) Solution

The multiplicative inverse of 49 is 9r.

c) To find the multiplicative inverse of 312 we first need to convert 312 to an improper fraction:

312=31+12=62+12=72

Solution

The multiplicative inverse of 312 is 27.

d) Do not let the negative sign confuse you. The multiplicative inverse of a negative number is also negative!

Solution

The multiplicative inverse of xy is yx.

e) The multiplicative inverse of 111 is 111. Remember that when we have a denominator of one, we omit the denominator.

Solution

The multiplicative inverse of 111 is 11.

Look again at the last example. When we took the multiplicative inverse of 111 we got a whole number, 11. This, of course, is expected. We said earlier that the multiplicative inverse of x is 1x.

The multiplicative inverse of a whole number is one divided that number.

Remember the idea of the invisible denominator. The idea that every integer is actually a rational number whose denominator is one. 5=51.

Divide Rational Numbers

Division can be thought of as the inverse process of multiplication. If we multiply a number by seven, we can divide the answer by seven to return to the original number. Another way to return to our original number is to multiply the answer by the multiplicative inverse of seven.

In this way, we can simplify the process of dividing rational numbers. We can turn a division problem into a multiplication process by replacing the divisor (the number we are dividing by) with its multiplicative inverse, or reciprocal.

To divide rational numbers, invert the divisor and multiply ab÷cd=abdc.

Also, abcd=abdc

Example 2

Divide the following rational numbers, giving your answer in the simplest form.

a) 12÷14

b) 73÷23

c) x2÷14y

d) 112x÷(xy)

a) Replace 14 with 41 and multiply. 12×41=12×2.22=12.

Solution

12÷14=2

b) Replace 23 with 32 and multiply. 73×32=72.

Solution

73÷23=72

c) eplace 14y with 4y1 and multiply. x2×4y1=x2×2.2.y1=x.2y1

Solution

x2÷14y=2xy

d) Replace (xy) with (yx) and multiply. 112x×(yx)=11.y2x.x .

Solution

112x(xy)=11y2x2

Solve Real-World Problems Using Division

Speed, Distance and Time

An object moving at a certain speed will cover a fixed distance in a set time. The quantities speed, distance and time are related through the equation:

Speed=DistanceTime

Example 3

Andrew is driving down the freeway. He passes mile marker 27 at exactly mid-day. At 12:35 he passes mile marker 69. At what speed, in miles per hour, is Andrew traveling?

To determine speed, we need the distance traveled and the time taken. If we want our speed to come out in miles per hour, we will need distance in miles and time in hours.

DistanceTime taken=6927=42 miles=35 minutes=3560=5.75.12=712 hour

We now plug in the values for distance and time into our equation for speed.

SpeedSpeed=42(712)=421÷712=421×127=7.61127=6.121Replace 712 with 127 and multiply.

Solution

Andrew is driving at 72 miles per hour.

Example 4

Anne runs a mile and a half in a quarter hour. What is her speed in miles per hour?

We already have the distance and time in the correct units (miles and hours). We simply write each as a rational number and plug them into the equation.

SpeedSpeed=(32)(14)=32÷14=32×41=122=6Replace 14 with 41 and multiply.

Solution

Anne runs at 6 miles per hour.

Example 5 – Newton’s Second Law

Newton’s second law (F=ma) relates the force applied to a body (F), the mass of the body (m) and the acceleration (a). Calculate the resulting acceleration if a Force of 713 Newtons is applied to a mass of 15 kg.

First, we rearrange our equation to isolate the acceleraion, a

aaa=Fm=(713)(15)=(7.33+13)÷(15)=223×51=1103Substitute in the known values.Determine improper fraction, then invert 15 and multiply.

Solution

The resultant acceleration is 3623 m/s2.

Lesson Summary

  • The multiplicative inverse of a number is the number which produces one when multiplied by the original number. The multiplicative inverse of x is the reciprocal 1x.
  • To find the multiplicative inverse of a rational number, we simply invert the fraction: ab inverts to ba.
  • To divide rational numbers, invert the divisor and multiply ab÷cd=ab×dc.

Review Questions

  1. Find the multiplicative inverse of each of the following.
    1. 100
    2. 28
    3. 1921
    4. 7
    5. z32xy2
  2. Divide the following rational numbers, be sure that your answer in the simplest form.
    1. 52÷14
    2. 12÷79
    3. 511÷67
    4. 12÷12
    5. x2÷57
    6. 12÷x4y
    7. (13)÷(35)
    8. 72÷74
    9. 11÷(x4)
  3. The label on a can of paint states that it will cover 50 square feet per pint. If I buy a 18 pint sample, it will cover a square two feet long by three feet high. Is the coverage I get more, less or the same as that stated on the label?
  4. The world’s largest trench digger, “Bagger 288”, moves at 38 mph. How long will it take to dig a trench 23 mile long?
  5. A 27 Newton force applied to a body of unknown mass produces an acceleration of 310 m/s2. Calculate the mass of the body. Note: Newton=kg m/s2.

Review Answers

    1. 1101
    2. 28
    3. 2119
    4. 17
    5. 2xy2z3
    1. 10
    2. 914
    3. 3566
    4. 1
    5. 7x10
    6. 2yx
    7. 59
    8. 2
    9. 44x
  1. At 48 square feet per pint I get less coverage.
  2. Time=169 hour (1 hr 46 min 40 sec)
  3. mass=2021 kg

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Algebra-I.2.6
Here