# 5.6: Multiplying and Dividing Square Roots

Difficulty Level: At Grade Created by: CK-12
Estimated9 minsto complete
%
Progress
Practice Multiplication and Division of Radicals

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated9 minsto complete
%
Estimated9 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

The area of a rectangle is \begin{align*}\sqrt{30}\end{align*}. The length of the rectangle is \begin{align*}\sqrt{20}\end{align*}. What is the width of the rectangle?

### Watch This

Watch the first part of this video, until about 3:15.

### Guidance

Dividing radicals can be a bit more difficult that the other operations. The main complication is that you cannot leave any radicals in the denominator of a fraction. For this reason we have to do something called rationalizing the denominator, where you multiply the top and bottom of a fraction by the same radical that is in the denominator. This will cancel out the radicals and leave a whole number.

4. \begin{align*}\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}\end{align*}

5. \begin{align*}\frac{\sqrt{a}}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{\sqrt{ab}}{b}\end{align*}

#### Example A

Simplify \begin{align*}\sqrt{\frac{1}{4}}\end{align*}.

Solution: Break apart the radical by using Rule #4.

\begin{align*}\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}\end{align*}

#### Example B

Simplify \begin{align*}\frac{2}{\sqrt{3}}\end{align*}.

Solution: This might look simplified, but radicals cannot be in the denominator of a fraction. This means we need to apply Rule #5 to get rid of the radical in the denominator, or rationalize the denominator. Multiply the top and bottom of the fraction by \begin{align*}\sqrt{3}\end{align*}.

\begin{align*}\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\end{align*}

#### Example C

Simplify \begin{align*}\sqrt{\frac{32}{40}}\end{align*}.

Solution: Reduce the fraction, and then apply the rules above.

\begin{align*}\sqrt{\frac{32}{40}}= \sqrt{\frac{4}{5}}= \frac{\sqrt{4}}{\sqrt{5}}= \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\end{align*}

Intro Problem Revisit Recall that the area of a rectangle equals the length times the width, so to find the width, we must divide the area by the length.

\begin{align*}\sqrt{\frac{30}{20}}\end{align*} = \begin{align*}\sqrt{\frac{3}{2}}\end{align*}.

Now we need to rationalize the denominator. Multiply the top and bottom of the fraction by \begin{align*}\sqrt{2}\end{align*}.

\begin{align*}\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}}{2}\end{align*}

Therefore, the width of the rectangle is \begin{align*}\frac{\sqrt{6}}{2}\end{align*}.

### Guided Practice

Simplify the following expressions using the Radical Rules learned in this concept and the previous concept.

1. \begin{align*}\sqrt{\frac{1}{2}}\end{align*}

2. \begin{align*}\sqrt{\frac{64}{50}}\end{align*}

3. \begin{align*}\frac{4\sqrt{3}}{\sqrt{6}}\end{align*}

1. \begin{align*}\sqrt{\frac{1}{2}}=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \frac{\sqrt{2}}{2}\end{align*}

2. \begin{align*}\sqrt{\frac{64}{50}}=\sqrt{\frac{32}{25}}=\frac{\sqrt{16 \cdot 2}}{5}= \frac{4\sqrt{2}}{5}\end{align*}

3. The only thing we can do is rationalize the denominator by multiplying the numerator and denominator by \begin{align*}\sqrt{6}\end{align*} and then simplify the fraction.

\begin{align*}\frac{4\sqrt{3}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}= \frac{4\sqrt{18}}{6}=\frac{4\sqrt{9 \cdot 2}}{6}= \frac{12\sqrt{2}}{6}=2\sqrt{2}\end{align*}

### Vocabulary

Rationalize the denominator
The process used to get a radical out of the denominator of a fraction.

### Practice

Simplify the following fractions.

1. \begin{align*}\sqrt{\frac{4}{25}}\end{align*}
2. \begin{align*}-\sqrt{\frac{16}{49}}\end{align*}
3. \begin{align*}\sqrt{\frac{96}{121}}\end{align*}
4. \begin{align*}\frac{5\sqrt{2}}{\sqrt{10}}\end{align*}
5. \begin{align*}\frac{6}{\sqrt{15}}\end{align*}
6. \begin{align*}\sqrt{\frac{60}{35}}\end{align*}
7. \begin{align*}8\frac{\sqrt{18}}{\sqrt{30}}\end{align*}
8. \begin{align*}\frac{12}{\sqrt{6}}\end{align*}
9. \begin{align*}\sqrt{\frac{208}{143}}\end{align*}
10. \begin{align*}\frac{21\sqrt{3}}{2\sqrt{14}}\end{align*}

Challenge Use all the Radical Rules you have learned in the last two oncepts to simplify the expressions.

1. \begin{align*}\sqrt{\frac{8}{12}} \cdot \sqrt{15}\end{align*}
2. \begin{align*}\sqrt{\frac{32}{45}} \cdot \frac{6\sqrt{20}}{\sqrt{5}}\end{align*}
3. \begin{align*}\frac{\sqrt{24}}{\sqrt{2}}+\frac{8\sqrt{26}}{\sqrt{8}}\end{align*}
4. \begin{align*}\frac{\sqrt{2}}{\sqrt{3}}+\frac{4\sqrt{6}}{\sqrt{3}}\end{align*}
5. \begin{align*}\frac{5\sqrt{5}}{\sqrt{12}}-\frac{2\sqrt{15}}{\sqrt{10}}\end{align*}

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

TermDefinition
Rationalize the denominator To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.

Show Hide Details
Description
Difficulty Level:
Authors:
Tags:
Subjects: