Skip Navigation

5.6: Multiplying and Dividing Square Roots

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated9 minsto complete
Practice Multiplication and Division of Radicals
This indicates how strong in your memory this concept is
Estimated9 minsto complete
Estimated9 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

The area of a rectangle is \begin{align*}\sqrt{30}\end{align*}. The length of the rectangle is \begin{align*}\sqrt{20}\end{align*}. What is the width of the rectangle?

Watch This

Watch the first part of this video, until about 3:15.

Khan Academy: How to Rationalize a Denominator


Dividing radicals can be a bit more difficult that the other operations. The main complication is that you cannot leave any radicals in the denominator of a fraction. For this reason we have to do something called rationalizing the denominator, where you multiply the top and bottom of a fraction by the same radical that is in the denominator. This will cancel out the radicals and leave a whole number.

Radical Rules

4. \begin{align*}\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}\end{align*}

5. \begin{align*}\frac{\sqrt{a}}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{\sqrt{ab}}{b}\end{align*}

Example A

Simplify \begin{align*}\sqrt{\frac{1}{4}}\end{align*}.

Solution: Break apart the radical by using Rule #4.


Example B

Simplify \begin{align*}\frac{2}{\sqrt{3}}\end{align*}.

Solution: This might look simplified, but radicals cannot be in the denominator of a fraction. This means we need to apply Rule #5 to get rid of the radical in the denominator, or rationalize the denominator. Multiply the top and bottom of the fraction by \begin{align*}\sqrt{3}\end{align*}.

\begin{align*}\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\end{align*}

Example C

Simplify \begin{align*}\sqrt{\frac{32}{40}}\end{align*}.

Solution: Reduce the fraction, and then apply the rules above.

\begin{align*}\sqrt{\frac{32}{40}}= \sqrt{\frac{4}{5}}= \frac{\sqrt{4}}{\sqrt{5}}= \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\end{align*}

Intro Problem Revisit Recall that the area of a rectangle equals the length times the width, so to find the width, we must divide the area by the length.

\begin{align*}\sqrt{\frac{30}{20}}\end{align*} = \begin{align*}\sqrt{\frac{3}{2}}\end{align*}.

Now we need to rationalize the denominator. Multiply the top and bottom of the fraction by \begin{align*}\sqrt{2}\end{align*}.

\begin{align*}\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}}{2}\end{align*}

Therefore, the width of the rectangle is \begin{align*}\frac{\sqrt{6}}{2}\end{align*}.

Guided Practice

Simplify the following expressions using the Radical Rules learned in this concept and the previous concept.

1. \begin{align*}\sqrt{\frac{1}{2}}\end{align*}

2. \begin{align*}\sqrt{\frac{64}{50}}\end{align*}

3. \begin{align*}\frac{4\sqrt{3}}{\sqrt{6}}\end{align*}


1. \begin{align*}\sqrt{\frac{1}{2}}=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \frac{\sqrt{2}}{2}\end{align*}

2. \begin{align*}\sqrt{\frac{64}{50}}=\sqrt{\frac{32}{25}}=\frac{\sqrt{16 \cdot 2}}{5}= \frac{4\sqrt{2}}{5}\end{align*}

3. The only thing we can do is rationalize the denominator by multiplying the numerator and denominator by \begin{align*}\sqrt{6}\end{align*} and then simplify the fraction.

\begin{align*}\frac{4\sqrt{3}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}= \frac{4\sqrt{18}}{6}=\frac{4\sqrt{9 \cdot 2}}{6}= \frac{12\sqrt{2}}{6}=2\sqrt{2}\end{align*}


Rationalize the denominator
The process used to get a radical out of the denominator of a fraction.


Simplify the following fractions.

  1. \begin{align*}\sqrt{\frac{4}{25}}\end{align*}
  2. \begin{align*}-\sqrt{\frac{16}{49}}\end{align*}
  3. \begin{align*}\sqrt{\frac{96}{121}}\end{align*}
  4. \begin{align*}\frac{5\sqrt{2}}{\sqrt{10}}\end{align*}
  5. \begin{align*}\frac{6}{\sqrt{15}}\end{align*}
  6. \begin{align*}\sqrt{\frac{60}{35}}\end{align*}
  7. \begin{align*}8\frac{\sqrt{18}}{\sqrt{30}}\end{align*}
  8. \begin{align*}\frac{12}{\sqrt{6}}\end{align*}
  9. \begin{align*}\sqrt{\frac{208}{143}}\end{align*}
  10. \begin{align*}\frac{21\sqrt{3}}{2\sqrt{14}}\end{align*}

Challenge Use all the Radical Rules you have learned in the last two oncepts to simplify the expressions.

  1. \begin{align*}\sqrt{\frac{8}{12}} \cdot \sqrt{15}\end{align*}
  2. \begin{align*}\sqrt{\frac{32}{45}} \cdot \frac{6\sqrt{20}}{\sqrt{5}}\end{align*}
  3. \begin{align*}\frac{\sqrt{24}}{\sqrt{2}}+\frac{8\sqrt{26}}{\sqrt{8}}\end{align*}
  4. \begin{align*}\frac{\sqrt{2}}{\sqrt{3}}+\frac{4\sqrt{6}}{\sqrt{3}}\end{align*}
  5. \begin{align*}\frac{5\sqrt{5}}{\sqrt{12}}-\frac{2\sqrt{15}}{\sqrt{10}}\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More


Rationalize the denominator To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
Date Created:
Mar 12, 2013
Last Modified:
Dec 21, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original