<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

5.9: Multiplying and Dividing Complex Numbers

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated12 minsto complete
Practice Products and Quotients of Complex Numbers
This indicates how strong in your memory this concept is
Estimated12 minsto complete
Estimated12 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Mr. Marchez draws a triangle on the board. He labels the height (2 + 3i) and the base (2 - 4i). "Find the area of the triangle," he says. (Recall that the area of a triangle is \begin{align*}A = \frac{1}{2}bh\end{align*}A=12bh, b is the length of the base and h is the length of the height.)

Watch This

First watch this video.

Khan Academy: Multiplying Complex Numbers

Then watch this video.

Khan Academy: Dividing Complex Numbers


When multiplying complex numbers, FOIL the two numbers together (see Factoring when \begin{align*}a = 1\end{align*}a=1 concept) and then combine like terms. At the end, there will be an \begin{align*}i^2\end{align*}i2 term. Recall that \begin{align*}i^2=-1\end{align*}i2=1 and continue to simplify.

Example A


a) \begin{align*}6i(1-4i)\end{align*}6i(14i)

b) \begin{align*}(5-2i)(3+8i)\end{align*}(52i)(3+8i)


a) Distribute the \begin{align*}6i\end{align*}6i to both parts inside the parenthesis.


Substitute \begin{align*}i^2 = -1\end{align*}i2=1 and simplify further.

\begin{align*}&=6i-24(-1)\\ &=24+6i\end{align*}=6i24(1)=24+6i

Remember to always put the real part first.

b) FOIL the two terms together.

\begin{align*}(5-2i)(3+8i) &= 15+40i-6i-16i^2\\ &= 15+34i-16i^2\end{align*}(52i)(3+8i)=15+40i6i16i2=15+34i16i2

Substitute \begin{align*}i^2 = -1\end{align*}i2=1 and simplify further.

\begin{align*}&= 15+34i-16(-1)\\ &= 15+34i+16\\ &= 31+34i\end{align*}=15+34i16(1)=15+34i+16=31+34i

More Guidance

Dividing complex numbers is a bit more complicated. Similar to irrational numbers, complex numbers cannot be in the denominator of a fraction. To get rid of the complex number in the denominator, we need to multiply by the complex conjugate. If a complex number has the form \begin{align*}a + bi\end{align*}a+bi, then its complex conjugate is \begin{align*}a-bi\end{align*}abi. For example, the complex conjugate of \begin{align*}-6 + 5i\end{align*}6+5i would be \begin{align*}-6-5i\end{align*}65i. Therefore, rather than dividing complex numbers, we multiply by the complex conjugate.

Example B

Simplify \begin{align*}\frac{8-3i}{6i}\end{align*}83i6i.

Solution: In the case of dividing by a pure imaginary number, you only need to multiply the top and bottom by that number. Then, use multiplication to simplify.

\begin{align*}\frac{8-3i}{6i}\cdot \frac{6i}{6i} &= \frac{48i-18i^2}{36i^2}\\ &= \frac{18+48i}{-36}\\ &= \frac{18}{-36}+\frac{48}{-36}i\\ &= -\frac{1}{2}-\frac{4}{3}i\end{align*}83i6i6i6i=48i18i236i2=18+48i36=1836+4836i=1243i

When the complex number contains fractions, write the number in standard form, keeping the real and imaginary parts separate. Reduce both fractions separately.

Example C

Simplify \begin{align*}\frac{3-5i}{2+9i}\end{align*}35i2+9i.

Solution: Now we are dividing by \begin{align*}2 + 9i\end{align*}2+9i, so we will need to multiply the top and bottom by the complex conjugate, \begin{align*}2-9i\end{align*}29i.

\begin{align*}\frac{3-5i}{2+9i}\cdot \frac{2-9i}{2-9i} &= \frac{6-27i-10i+45i^2}{4-18i+18i-81i^2}\\ &= \frac{6-37i-45}{4+81}\\ &= \frac{-39-37i}{85}\\ &= - \frac{39}{85}-\frac{37}{85}i\end{align*}35i2+9i29i29i=627i10i+45i2418i+18i81i2=637i454+81=3937i85=39853785i

Notice, by multiplying by the complex conjugate, the denominator becomes a real number and you can split the fraction into its real and imaginary parts.

In both Examples B and C, substitute \begin{align*}i^2 = -1\end{align*}i2=1 to simplify the fraction further. Your final answer should never have any power of \begin{align*}i\end{align*}i greater than 1.

Intro Problem Revisit The area of the triangle is \begin{align*} \frac{(2 + 3i)(2 - 4i)}{2}\end{align*}(2+3i)(24i)2 so FOIL the two terms together and divide by 2.

\begin{align*}(2 + 3i)(2 - 4i) = 4 - 8i + 6i -12i^2\\ &= 4 - 2i - 12i^2\end{align*}(2+3i)(24i)=48i+6i12i2=42i12i2

Substitute \begin{align*}i^2 = -1\end{align*}i2=1 and simplify further.

\begin{align*}&= 4 - 2i -12(-1)\\ &= 4 - 2i + 12\\ &= 16 - 2i\end{align*}=42i12(1)=42i+12=162i

Now divide this product by 2.

\begin{align*} \frac {16 - 2i}{2} = 8 - i\end{align*}162i2=8i

Therefore the area of the triangle is \begin{align*}8 -i\end{align*}8i.

Guided Practice

1. What is the complex conjugate of \begin{align*}7-5i\end{align*}75i?

Simplify the following complex expressions.

2. \begin{align*}(7-4i)(6+2i)\end{align*}(74i)(6+2i)

3. \begin{align*}\frac{10-i}{5i}\end{align*}10i5i

4. \begin{align*}\frac{8+i}{6-4i}\end{align*}8+i64i


1. \begin{align*}7 + 5i\end{align*}7+5i

2. FOIL the two expressions.

\begin{align*}(7-4i)(6+2i) &= 42+14i-24i-8i^2\\ &= 42-10i+8\\ &= 50-10i\end{align*}(74i)(6+2i)=42+14i24i8i2=4210i+8=5010i

3. Multiply the numerator and denominator by \begin{align*}5i\end{align*}5i.

\begin{align*}\frac{10-i}{5i} \cdot \frac{5i}{5i} &= \frac{50i-5i^2}{25i^2}\\ &= \frac{5+50i}{-25}\\ &= \frac{5}{-25}+\frac{50}{-25}i\\ &= -\frac{1}{5}-2i\end{align*}10i5i5i5i=50i5i225i2=5+50i25=525+5025i=152i

4. Multiply the numerator and denominator by the complex conjugate, \begin{align*}6 + 4i\end{align*}6+4i.

\begin{align*}\frac{8+i}{6-4i} \cdot \frac{6+4i}{6+4i} &= \frac{48+32i+6i+4i^2}{36+24i-24i-16i^2}\\ &= \frac{48+38i-4}{36+16}\\ &= \frac{44+38i}{52}\\ &= \frac{44}{52} + \frac{38}{52}i\\ &= \frac{11}{13}+\frac{19}{26}i\end{align*}8+i64i6+4i6+4i=48+32i+6i+4i236+24i24i16i2=48+38i436+16=44+38i52=4452+3852i=1113+1926i


Complex Conjugate

The “opposite” of a complex number. If a complex number has the form \begin{align*}a+bi\end{align*}a+bi, its complex conjugate is \begin{align*}a-bi\end{align*}abi. When multiplied, these two complex numbers will produce a real number.


Simplify the following expressions. Write your answers in standard form.

  1. \begin{align*}i(2-7i)\end{align*}i(27i)
  2. \begin{align*}8i(6+3i)\end{align*}
  3. \begin{align*}-2i(11-4i)\end{align*}
  4. \begin{align*}(9+i)(8-12i)\end{align*}
  5. \begin{align*}(4+5i)(3+16i)\end{align*}
  6. \begin{align*}(1-i)(2-4i)\end{align*}
  7. \begin{align*}4i(2-3i)(7+3i)\end{align*}
  8. \begin{align*}(8-5i)(8+5i)\end{align*}
  9. \begin{align*}\frac{4+9i}{3i}\end{align*}
  10. \begin{align*}\frac{6-i}{12i}\end{align*}
  11. \begin{align*}\frac{7+12i}{-5i}\end{align*}
  12. \begin{align*}\frac{4-2i}{6-6i}\end{align*}
  13. \begin{align*}\frac{2-i}{2+i}\end{align*}
  14. \begin{align*}\frac{10+8i}{2+4i}\end{align*}
  15. \begin{align*}\frac{14+9i}{7-20i}\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


complex number

A complex number is the sum of a real number and an imaginary number, written in the form a + bi.

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
Date Created:
Mar 12, 2013
Last Modified:
Sep 07, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original