<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

6.5: Multiplying Polynomials

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated21 minsto complete
Practice Multiplying Polynomials
Estimated21 minsto complete
Practice Now
Turn In

The length of a rectangular garden plot is \begin{align*}x^3 + 5x^2 - 1\end{align*}x3+5x21. The width of the plot is \begin{align*}x^2 + 3\end{align*}x2+3. What is the area of the garden plot?

Watch This

James Sousa: Ex: Polynomial Multiplication Involving Binomials and Trinomials


Multiplying together polynomials is very similar to multiplying together factors. You can FOIL or we will also present an alternative method. When multiplying together polynomials, you will need to use the properties of exponents, primarily the Product Property \begin{align*}(a^m \cdot a^n = a^{m+n})\end{align*}(aman=am+n) and combine like terms.

Example A

Find the product of \begin{align*}(x^2-5)(x^3 + 2x-9)\end{align*}(x25)(x3+2x9).

Solution: Using the FOIL method, you need be careful. First, take the \begin{align*}x^2\end{align*}x2 in the first polynomial and multiply it by every term in the second polynomial.

Now, multiply the -5 and multiply it by every term in the second polynomial.

Lastly, combine any like terms. In this example, only the \begin{align*}x^3\end{align*}x3 terms can be combined.

Example B

Multiply \begin{align*}(x^2+4x-7)(x^3-8x^2+6x-11)\end{align*}(x2+4x7)(x38x2+6x11).

Solution: In this example, we will use the “box” method. Align the two polynomials along the top and left side of a rectangle and make a row or column for each term. Write the polynomial with more terms along the top of the rectangle.

Multiply each term together and fill in the corresponding spot.

Finally, combine like terms. The final answer is \begin{align*}x^5 -4x^4 -33x^3 + 69x^2 -86x + 77\end{align*}x54x433x3+69x286x+77. This method presents an alternative way to organize the terms. Use whichever method you are more comfortable with. Keep in mind, no matter which method you use, you will multiply every term in the first polynomial by every term in the second.

Example C

Find the product of \begin{align*}(x-5)(2x + 3)(x^2 + 4)\end{align*}(x5)(2x+3)(x2+4).

Solution: In this example we have three binomials. When multiplying three polynomials, start by multiplying the first two binomials together.

\begin{align*}(x-5)(2x+3) &= 2x^2+3x-10x-15\\ &= {\color{red}2x^2-7x-15}\end{align*}(x5)(2x+3)=2x2+3x10x15=2x27x15

Now, multiply the answer by the last binomial.

\begin{align*}({\color{red}2x^2-7x-15})(x^2+4) &= 2x^4+8x^2-7x^3-28x-15x^2-60\\ &= 2x^4-7x^3-7x^2-28x-60\end{align*}(2x27x15)(x2+4)=2x4+8x27x328x15x260=2x47x37x228x60

Intro Problem Revisit Recall that the area of a rectangle is \begin{align*}A = lw\end{align*}A=lw, where l is the lenght and w is the width. Therefore, we need to multiply.

\begin{align*} A =(x^3 + 5x^2 - 1)(x^2 + 3)\\ = x^5 + 3x^3 + 5x^4 + 15x^2 - x^2 - 3\end{align*}A=(x3+5x21)(x2+3)=x5+3x3+5x4+15x2x23.

Now combine like terms and simplify. Be sure to write your answer in standard form

\begin{align*}x^5 + 3x^3 + 5x^4 + (15x^2 - x^2) - 3\\ = x^5 + 3x^3 + 5x^4 + 14x^2 - 3\\ = x^5 + 5x^4 + 3x^3 + 14x^2 - 3\end{align*}x5+3x3+5x4+(15x2x2)3=x5+3x3+5x4+14x23=x5+5x4+3x3+14x23

Therefore, the area of the garden plot is \begin{align*}x^5 + 5x^4 + 3x^3 + 14x^2 - 3\end{align*}x5+5x4+3x3+14x23.

Guided Practice

Find the product of the polynomials.

1. \begin{align*}-2x^2(3x^3-4x^2+12x-9)\end{align*}2x2(3x34x2+12x9)

2. \begin{align*}(4x^2-6x+11)(-3x^3+x^2+8x-10)\end{align*}(4x26x+11)(3x3+x2+8x10)

3. \begin{align*}(x^2-1)(3x-4)(3x+4)\end{align*}(x21)(3x4)(3x+4)

4. \begin{align*}(2x-7)^2\end{align*}(2x7)2


1. Use the distributive property to multiply \begin{align*}-2x^2\end{align*}2x2 by the polynomial.

\begin{align*}-2x^2(3x^3-4x^2+12x-9) = -6x^5+8x^4-24x^3+18x^2\end{align*}2x2(3x34x2+12x9)=6x5+8x424x3+18x2

2. Multiply each term in the first polynomial by each one in the second polynomial.

\begin{align*}(4x^2-6x+11)(-3x^3+x^2+8x-10) &= -12x^5+4x^4+32x^3-40x^2\\ & \qquad \qquad \ +18x^4-6x^3-48x^2+60x\\ & \qquad \qquad \qquad \quad \ -33x^3+11x^2+88x-110\\ &= -12x^5+22x^4-7x^3-77x^2+148x-110\end{align*}(4x26x+11)(3x3+x2+8x10)=12x5+4x4+32x340x2 +18x46x348x2+60x 33x3+11x2+88x110=12x5+22x47x377x2+148x110

3. Multiply the first two binomials together.

\begin{align*}(x^2-1)(3x-4) = 3x^3-4x^2-3x+4\end{align*}(x21)(3x4)=3x34x23x+4

Multiply this product by the last binomial.

\begin{align*}(3x^3-4x^2-3x+4)(3x+4) &= 9x^4+12x^3-12x^3-16x^2-9x^2-12x+12x-16\\ &= 9x^4-25x^2-16\end{align*}(3x34x23x+4)(3x+4)=9x4+12x312x316x29x212x+12x16=9x425x216

4. The square indicates that there are two binomials. Expand this and multiply.

\begin{align*}(2x-7)^2 &= (2x-7)(2x-7)\\ &= 4x^2-14x-14x+49\\ &= 4x^2-28x+49\end{align*}(2x7)2=(2x7)(2x7)=4x214x14x+49=4x228x+49


Find the product.

  1. \begin{align*}5x(x^2-6x+8)\end{align*}5x(x26x+8)
  2. \begin{align*}-x^2(8x^3-11x+20)\end{align*}x2(8x311x+20)
  3. \begin{align*}7x^3(3x^3-x^2+16x+10)\end{align*}7x3(3x3x2+16x+10)
  4. \begin{align*}(x^2+4)(x-5)\end{align*}(x2+4)(x5)
  5. \begin{align*}(3x^2-4)(2x-7)\end{align*}(3x24)(2x7)
  6. \begin{align*}(9-x^2)(x+2)\end{align*}(9x2)(x+2)
  7. \begin{align*}(x^2+1)(x^2-2x-1)\end{align*}
  8. \begin{align*}(5x-1)(x^3+8x-12)\end{align*}
  9. \begin{align*}(x^2-6x-7)(3x^2-7x+15)\end{align*}
  10. \begin{align*}(x-1)(2x-5)(x+8)\end{align*}
  11. \begin{align*}(2x^2+5)(x^2-2)(x+4)\end{align*}
  12. \begin{align*}(5x-12)^2\end{align*}
  13. \begin{align*}-x^4(2x+11)(3x^2-1)\end{align*}
  14. \begin{align*}(4x+9)^2\end{align*}
  15. \begin{align*}(4x^3-x^2-3)(2x^2-x+6)\end{align*}
  16. \begin{align*}(2x^3-6x^2+x+7)(5x^2+2x-4)\end{align*}
  17. \begin{align*}(x^3+x^2-4x+15)(x^2-5x-6)\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More


distributive property

The distributive property states that the product of an expression and a sum is equal to the sum of the products of the expression and each term in the sum. For example, a(b + c) = ab + ac.

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
Date Created:
Mar 12, 2013
Last Modified:
Jun 07, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original