<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

8.11: Solving Logarithmic Equations

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated27 minsto complete
%
Progress
Practice Solving Logarithmic Equations
Practice
Progress
Estimated27 minsto complete
%
Practice Now

"I'm thinking of another number," you tell your best friend. "The number I'm thinking of satisfies the equation \begin{align*}\log 10x^2 - \log x = 3\end{align*}." What number are you thinking of?

Guidance

A logarithmic equation has the variable within the log. To solve a logarithmic equation, you will need to use the inverse property, \begin{align*}b^{\log_b x}=x\end{align*}, to cancel out the log.

Example A

Solve \begin{align*}\log_2(x+5)=9\end{align*}.

Solution: There are two different ways to solve this equation. The first is to use the definition of a logarithm.

\begin{align*}\log_2(x+5) &= 9 \\ 2^9 &= x+5 \\ 512 &= x+5 \\ 507 &= x\end{align*}

The second way to solve this equation is to put everything into the exponent of a 2, and then use the inverse property.

\begin{align*}2^{\log_2(x+5)} &= 2^9 \\ x+5 &= 512 \\ x &= 507\end{align*}

Make sure to check your answers for logarithmic equations. There can be times when you get an extraneous solution. \begin{align*}\log_2(507+5)=9 \rightarrow \log_2 512=9 \end{align*}

Example B

Solve \begin{align*}3 \ln(-x)-5=10\end{align*}.

Solution: First, add 5 to both sides and then divide by 3 to isolate the natural log.

\begin{align*}3 \ln(-x)-5 &= 10 \\ 3 \ln(-x) &= 15 \\ \ln(-x)&= 5\end{align*}

Recall that the inverse of the natural log is the natural number. Therefore, everything needs to be put into the exponent of \begin{align*}e\end{align*} in order to get rid of the log.

\begin{align*}e^{\ln(-x)} &= e^5 \\ -x &= e^5 \\ x &= -e^5 \approx -148.41\end{align*}

Checking the answer, we have \begin{align*}3 \ln(-(-e^5))-5=10 \rightarrow 3\ln e^5 -5 =10 \rightarrow 3 \cdot 5-5=10\end{align*}

Example C

Solve \begin{align*}\log 5x + \log(x-1)=2\end{align*}

Solution: Condense the left-hand side using the Product Property.

\begin{align*}\log 5x + \log (x-1)=2 \\ \log [5x(x-1)]=2 \\ \log (5x^2-5x)=2\end{align*}

Now, put everything in the exponent of 10 and solve for \begin{align*}x\end{align*}.

\begin{align*}10^{\log(5x^2-5x)} &= 10^2 \\ 5x^2 - 5x &= 100 \\ x^2-x-20 &= 0 \\ (x-5)(x+4) &= 0 \\ x &=5, -4\end{align*}

Now, check both answers.

\begin{align*}\log 5(5) + \log(5-1) &= 2 \qquad \qquad \log5(-4) + \log((-4)-1)= 2 \\ \log 25 + \log 4 &= 2 \qquad \qquad \quad \ \log(-20) + \log(-5) = 2 \\ \log 100 &= 2\end{align*}

-4 is an extraneous solution. In the step \begin{align*}\log(-20) + \log(-5)=2\end{align*}, we cannot take the log of a negative number, therefore -4 is not a solution. 5 is the only solution.

Intro Problem Revisit We can rewrite \begin{align*}\log 10x^2 - \log x = 3\end{align*} as \begin{align*}\log {\frac{10x^2}{x}} = 3\end{align*} and solve for x.

\begin{align*}\log {\frac{10x^2}{x}} = 3\\ \log 10x = 3\\ 10^{\log10x} = 10^3\\ 10x = 1000\\ x = 100\end{align*}

Therefore, the number you are thinking of is 100.

Guided Practice

Solve the following logarithmic equations.

1. \begin{align*}9 + 2 \log_3 x=23\end{align*}

2. \begin{align*}\ln (x-1)-\ln(x+1)=8\end{align*}

3. \begin{align*}\frac{1}{2}\log_5(2x+5)=5\end{align*}

Answers

1. Isolate the log and put everything in the exponent of 3.

\begin{align*}9 + 2 \log_3 x &= 23 \\ 2 \log_3 x &= 14 \\ \log_3 x &= 7 \\ x &= 3^7=2187\end{align*}

2. Condense the left-hand side using the Quotient Rule and put everything in the exponent of \begin{align*}e\end{align*}.

\begin{align*}\ln(x-1) - \ln(x+1) &=8 \\ \ln \left(\frac{x-1}{x+1}\right) &= 8 \\ \frac{x-1}{x+1} &= \ln 8 \\ x-1 &=(x+1) \ln 8 \\ x-1 &= x \ln 8 + \ln 8 \\ x-x \ln 8 &= 1 + \ln 8 \\ x(1- \ln 8) &= 1 + \ln 8 \\ x &= \frac{1+ \ln 8}{1- \ln 8} \approx -2.85\end{align*}

Checking our answer, we get \begin{align*}\ln (-2.85-1) - \ln (2.85+1)=8\end{align*}, which does not work because the first natural log is of a negative number. Therefore, there is no solution for this equation.

3. Multiply both sides by 2 and put everything in the exponent of a 5.

\begin{align*}\frac{1}{2} \log_5(2x+5)&= 2 \\ \log_5(2x+5)&=4 \\ 2x+5 &= 625 \\ 2x &=620 \\ x &= 310\end{align*}

Practice

Use properties of logarithms and a calculator to solve the following equations for \begin{align*}x\end{align*}. Round answers to three decimal places and check for extraneous solutions.

  1. \begin{align*}\log_2 x =15\end{align*}
  2. \begin{align*}\log x = 125\end{align*}
  3. \begin{align*}\log_9 (x-5) =16\end{align*}
  4. \begin{align*}\log_7(2x+3)=3\end{align*}
  5. \begin{align*}8 \ln(3-x)=5\end{align*}
  6. \begin{align*}4 \log_3 3x-\log_3 x=5\end{align*}
  7. \begin{align*}\log(x+5) + \log x = \log 14\end{align*}
  8. \begin{align*}2 \ln x - \ln x =0\end{align*}
  9. \begin{align*}3 \log_3(x-5) = 3\end{align*}
  10. \begin{align*}\frac{2}{3} \log_3 x=2\end{align*}
  11. \begin{align*}5 \log \frac{x}{2} -3 \log \frac{1}{x} = \log 8\end{align*}
  12. \begin{align*}2 \ln x^{e+2} - \ln x=10\end{align*}
  13. \begin{align*}2 \log_6 x+1 = \log_6(5x+4)\end{align*}
  14. \begin{align*}2 \log_{\frac{1}{2}}x+2=\log_{\frac{1}{2}}(x+10)\end{align*}
  15. \begin{align*}3 \log_{\frac{2}{3}} x-\log_{\frac{2}{3}} 27 = \log_{\frac{2}{3}}8\end{align*}

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Mar 12, 2013
Last Modified:
Jun 07, 2016
Files can only be attached to the latest version of Modality
Reviews
100 % of people thought this content was helpful.
0
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALY.338.L.1