<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

7.2: Rational Exponents and Roots

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated7 minsto complete
%
Progress
Practice Fractional Exponents
Practice
Progress
Estimated7 minsto complete
%
Practice Now

A planet's maximum distance from the sun (in astronomical units) is given by the formula d=p23, were p is the period (in years) of the planet's orbit around the sun. If a planet's orbit around the sun is 27 years, what is its distance from the sun?

Guidance

Now that you are familiar with nth roots, we will convert them into exponents. Let’s look at the square root and see if we can use the properties of exponents to determine what exponential number it is equivalent to.

Investigation: Writing the Square Root as an Exponent

1. Evaluate (x)2. What happens?

  • The and the 2 cancel each other out, (x2)=x.

2. Recall that when a power is raised to another power, we multiply the exponents. Therefore, we can rewrite the exponents and root as an equation, n2=1. Solve for n.

  • n22n=12=12

3. From #2, we can conclude that =12.

  • (x)2=(x12)2=x(12)2=x1=x

From this investigation, we see that x=x12. We can extend this idea to the other roots as well; x3=x13=x4=x14,xn=x1n.

Example A

Find 25614.

Solution: Rewrite this expression in terms of roots. A number to the one-fourth power is the same as the fourth root.

25614=2564=444=4

Therefore, 25614=4.

Example B

Find 4932.

Solution: This problem is the same as the ones in the previous concept. However, now, the root is written in the exponent. Rewrite the problem.

4932=(493)12=493 or (49)3

From the previous concept, we know that it is easier to evaluate the second option above. (49)3=73=343.

The Rational Exponent Theorem: For any real number a, root n, and exponent m, the following is always true: amn=amn=(an)m.

Example C

Find 523 using a calculator. Round your answer to the nearest hundredth.

Solution: To type this into a calculator, the keystrokes would probably look like: 523. The “^” symbol is used to indicate a power. Anything in parenthesis after the “^” would be in the exponent. Evaluating this, we have 2.924017738..., or just 2.92.

Other calculators might have a xy button. This button has the same purpose as the ^ and would be used in the exact same way.

Intro Problem Revisit Substitute 27 for p and solve.

d=2723

Rewrite the problem.

2723=(272)13=2723 or 2732

(273)2=32=9.

Therefore, the planet's distance from the sun is 9 astronomical units.

Guided Practice

1. Rewrite 127 using rational exponents. Then, use a calculator to find the answer.

2. Rewrite 84549 using roots. Then, use a calculator to find the answer.

Evaluate without a calculator.

3. 12543

4. 25658

5. 8112

Answers

1. Using rational exponents, the 7th root becomes the 17 power;1217=1.426.

2. Using roots, the 9 in the denominator of the exponent is the root;84549=19.99. To enter this into a calculator, you can use the rational exponents. If you have a TI-83 or 84, press MATH and select 5: x. On the screen, you should type 9x 8454 to get the correct answer. You can also enter 845(49) and get the exact same answer

3. 12543=(1253)4=54=625

4. 25658=(2568)5=25=32

5. 8112=81=9=3

Explore More

Write the following expressions using rational exponents and then evaluate using a calculator. Answers should be rounded to the nearest hundredth.

  1. 455
  2. 1409
  3. 5083

Write the following expressions using roots and then evaluate using a calculator. Answers should be rounded to the nearest hundredth.

  1. 7253
  2. 9523
  3. 12534

Evaluate the following without a calculator.

  1. 6423
  2. 2743
  3. 1654
  4. 253
  5. 925
  6. 3225

For the following problems, rewrite the expressions with rational exponents and then simplify the exponent and evaluate without a calculator.

  1. (23)84
  2. 7236
  3. (16)126

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 7.2. 

Vocabulary

Rational Exponent

Rational Exponent

A rational exponent is a fractional exponent.

Image Attributions

Description

Difficulty Level:

At Grade

Grades:

Date Created:

Mar 12, 2013

Last Modified:

Jun 04, 2015
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.722.2.L.3

Original text