<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

7.3: Applying the Laws of Exponents to Rational Exponents

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Operations with Rational Exponents
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In

The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula \begin{align*}P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\end{align*}. If the length of a pendulum is \begin{align*}9.8^{\frac{8}{3}}\end{align*}, what is its period?

Applying the Laws of Exponents to Rational Exponents

When simplifying expressions with rational exponents, all the laws of exponents that were learned previously are still valid. On top of that, the rules of fractions apply as well.

Let's simplify the following.

  1. \begin{align*}x^{\frac{1}{2}} \cdot x^{\frac{3}{4}}\end{align*}

Recall from the Product Property of Exponents, that when two numbers with the same base are multiplied we add the exponents. Here, the exponents do not have the same base, so we need to find a common denominator and then add the numerators.

\begin{align*}x^{\frac{1}{2}}\cdot x^{\frac{3}{4}}=x^{\frac{2}{4}}\cdot x^{\frac{3}{4}}=x^{\frac{5}{4}}\end{align*}

This rational exponent does not reduce, so we are done.

  1. \begin{align*}\frac{4x^{\frac{2}{3}}y^4}{16x^3y^{\frac{5}{6}}}\end{align*}

This problem utilizes the Quotient Property of Exponents. Subtract the exponents with the same base and reduce \begin{align*}\frac{4}{16}\end{align*}.

\begin{align*}\frac{4x^{\frac{2}{3}}y^4}{16x^3y^{\frac{5}{6}}}=\frac{1}{4}x^{{\left(\frac{2}{3}\right)}-3}y^{\frac{4-5}{6}}=\frac{1}{4}x^{\frac{-7}{3}}y^{\frac{19}{6}}\end{align*}

If you are writing your answer in terms of positive exponents, your answer would be \begin{align*}\frac{y^{\frac{19}{6}}}{4x^{\frac{7}{3}}}\end{align*}. Notice, that when a rational exponent is improper we do not change it to a mixed number.

If we were to write the answer using roots, then we would take out the whole numbers. For example, \begin{align*}y= \frac{19}{6}\end{align*} can be written as \begin{align*}y^{\frac{19}{6}}=y^3y^{\frac{1}{6}}=y^3\sqrt[6]{y}\end{align*} because 6 goes into 19, 3 times with a remainder of 1.

  1. \begin{align*}\frac{\left(2x^{\frac{1}{2}}y^6\right)^{\frac{2}{3}}}{4x^{\frac{5}{4}}y^{\frac{9}{4}}}\end{align*}

On the numerator, the entire expression is raised to the \begin{align*}\frac{2}{3}\end{align*} power. Distribute this power to everything inside the parenthesis. Then, use the Powers Property of Exponents and rewrite 4 as \begin{align*}2^2\end{align*}.

\begin{align*}\frac{\left(2x^{\frac{1}{2}}y^6\right)^{\frac{2}{3}}}{4x^{\frac{5}{4}}y^{\frac{9}{4}}}=\frac{2^{\frac{2}{3}}x^{\frac{1}{3}}y^4}{2^2x^{\frac{5}{4}}y^{\frac{9}{4}}}\end{align*}

Combine like terms by subtracting the exponents.

\begin{align*}\frac{2^{\frac{2}{3}}x^{\frac{1}{3}}y^4}{2^2x^{\frac{5}{4}}y^{\frac{9}{4}}} = 2^{\left(\frac{2}{3}\right)-2}x^{\left(\frac{1}{3}\right)-\left(\frac{5}{4}\right)}y^{4-\left(\frac{9}{4}\right)}=2^{\frac{-4}{3}}x^{\frac{-11}{12}}y^{\frac{7}{4}}\end{align*}

Finally, rewrite the answer with positive exponents by moving the 2 and \begin{align*}x\end{align*} into the denominator. \begin{align*}\frac{y^{\frac{7}{4}}}{2^{\frac{4}{3}}x^{\frac{11}{12}}}\end{align*}

Examples

Example 1

Earlier, you were asked to find the period of the pendulum. 

Substitute \begin{align*}9.8^{\frac{8}{3}}\end{align*} for L and solve.

\begin{align*}P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\\ P = 2\pi{(\frac{9.8^{\frac{8}{3}}}{9.8})}^{\frac{1}{2}}\\ P = 2\pi{(\frac{9.8^{\frac{8}{3}}}{9.8^{\frac{3}{3}}})^{\frac{1}{2}}}\\ P = 2\pi{(9.8^{\frac{5}{3}})^{\frac{1}{2}}}\\ P = 2\pi{(9.8)^{\frac{5}{6}}}\end{align*}

Therefore, the period of the pendulum is \begin{align*} P = 2\pi{(9.8)^{\frac{5}{6}}}\end{align*}.

Simplify each expression below. Reduce all rational exponents and write final answers using positive exponents.

Example 2

\begin{align*}4d^{\frac{3}{5}} \cdot 8^{\frac{1}{3}}d^{\frac{2}{5}}\end{align*}

Change 4 and 8 so that they are powers of 2 and then add exponents with the same base.

\begin{align*}4d^{\frac{3}{5}} \cdot 8^{\frac{1}{3}}d^{\frac{2}{5}}=2^2 d^{\frac{3}{5}} \cdot \left(2^3\right)^{\frac{1}{3}}d^{\frac{2}{5}}=2^3 d^{\frac{5}{5}}=8d\end{align*}

Example 3

\begin{align*}\frac{w^{\frac{7}{4}}}{w^{\frac{1}{2}}}\end{align*}

Subtract the exponents. Change the \begin{align*}\frac{1}{2}\end{align*} power to \begin{align*}\frac{2}{4}\end{align*}.

\begin{align*}\frac{w^{\frac{7}{4}}}{w^\frac{1}{2}}= \frac{w^{\frac{7}{4}}}{w^{\frac{2}{4}}}=w^{\frac{5}{4}}\end{align*}

Example 4

\begin{align*}\left(3^{\frac{3}{2}}x^4 y^{\frac{6}{5}}\right)^{\frac{4}{3}}\end{align*}

Distribute the \begin{align*}\frac{4}{3}\end{align*} power to everything inside the parenthesis and reduce.

\begin{align*}\left(3^{\frac{3}{2}}x^4 y^{\frac{6}{5}}\right)^{\frac{4}{3}}=3^{\frac{12}{6}}x^{\frac{16}{3}}y^{\frac{24}{15}}=3^2 x^{\frac{16}{3}}y^{\frac{8}{5}}=9x^{\frac{16}{3}}y^{\frac{8}{5}}\end{align*}

Review

Simplify each expression. Reduce all rational exponents and write final answer using positive exponents.

  1. \begin{align*}\frac{1}{5}a^{\frac{4}{5}}25^{\frac{3}{2}}a^{\frac{3}{5}}\end{align*}
  2. \begin{align*}7b^{\frac{4}{3}}49^{\frac{1}{2}}b^{-\frac{2}{3}}\end{align*}
  3. \begin{align*}\frac{m^{\frac{8}{9}}}{m^{\frac{2}{3}}}\end{align*}
  4. \begin{align*}\frac{x^{\frac{4}{7}}y^{\frac{11}{6}}}{x^{\frac{1}{14}}y^{\frac{5}{3}}}\end{align*}
  5. \begin{align*}\frac{8^{\frac{5}{3}}r^5 s^{\frac{3}{4}}t^{\frac{1}{3}}}{2^4 r^{\frac{21}{5}}s^2 t^{\frac{7}{9}}}\end{align*}
  6. \begin{align*}\left(a^{\frac{3}{2}}b^{\frac{4}{5}}\right)^{\frac{10}{3}}\end{align*}
  7. \begin{align*}\left(5x^{\frac{5}{7}}y^4\right)^{\frac{3}{2}}\end{align*}
  8. \begin{align*}\left(\frac{4x^{\frac{2}{5}}}{9y^{\frac{4}{5}}}\right)^{\frac{5}{2}}\end{align*}
  9. \begin{align*}\left(\frac{75d^{\frac{18}{5}}}{3d^{\frac{3}{5}}}\right)^{\frac{5}{2}}\end{align*}
  10. \begin{align*}\left(\frac{81^{\frac{3}{2}}a^3}{8a^{\frac{9}{2}}}\right)^{\frac{1}{3}}\end{align*}
  11. \begin{align*}27^{\frac{2}{3}}m^{\frac{4}{5}}n^{-\frac{3}{2}}4^{\frac{1}{2}}m^{-\frac{2}{3}}n^{\frac{8}{5}}\end{align*}
  12. \begin{align*}\left(\frac{3x^{\frac{3}{8}}y^{\frac{2}{5}}}{5x^{\frac{1}{4}}y^{-\frac{3}{10}}}\right)^2\end{align*}
  13. Rewrite your answer from Problem #1 using radicals.
  14. Rewrite your answer from Problem #4 using radicals.
  15. Rewrite your answer from Problem #4 using one radical.

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 7.3. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Mar 12, 2013
Last Modified:
Sep 07, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.723.L.1
Here