<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

7.9: Solving Rational Exponent Equations

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated11 minsto complete
%
Progress
Practice Solving Equations with Fractional Exponents
Practice
Progress
Estimated11 minsto complete
%
Practice Now

The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula \begin{align*}P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\end{align*}. If the period of a pendulum is \begin{align*}10\pi\end{align*} is the length of the pendulum 156.8?

Solving Rational Exponent Equations

This concept is very similar to the previous two. When solving a rational exponent equation, isolate the variable. Then, to eliminate the exponent, you will need to raise everything to the reciprocal power.

Solve the following equations

Determine if x = 9 is a solution to \begin{align*}2x^{\frac{3}{2}}-19=35\end{align*}.

Substitute in x and see if the equation holds.

\begin{align*}2(9)^{\frac{3}{2}}-19&=35 \\ 2 \cdot 27 -19 &= 35 \\ 54 - 19 &= 35 \end{align*}

9 is a solution to this equation.

Solve \begin{align*}3x^{\frac{5}{2}}=96\end{align*}.

First, divide both sides by 3 to isolate \begin{align*}x\end{align*}.

\begin{align*}3x^{\frac{5}{2}}&=96\\ x^{\frac{5}{2}}&=32 \end{align*}

\begin{align*}x\end{align*} is raised to the five-halves power. To cancel out this exponent, we need to raise everything to the two-fifths power.

\begin{align*}\left(x^{\frac{5}{2}}\right)^{\frac{2}{5}}&=32^{\frac{2}{5}}\\ x&=32^{\frac{2}{5}}\\ x&=\sqrt[5]{32}^2=2^2=4\end{align*}

Check: \begin{align*}3(4)^{\frac{5}{2}}=3 \cdot 2^5=3 \cdot 32=96\end{align*}

Solve \begin{align*}-2(x-5)^{\frac{3}{4}}+48=-202\end{align*}.

Isolate \begin{align*}(x-5)^{\frac{3}{4}}\end{align*} by subtracting 48 and dividing by -2.

\begin{align*}-2(x-5)^{\frac{3}{4}}+48&=-202\\ -2(x-5)^{\frac{3}{4}}&=-250\\ (x-5)^{\frac{3}{4}}&=-125\end{align*}

To undo the three-fourths power, raise everything to the four-thirds power.

\begin{align*}\left[ \left(x-5 \right)^{\frac{3}{4}}\right]^{\frac{4}{3}}&=\left(-125 \right)^{\frac{4}{3}}\\ x-5&=625\\ x&=630\end{align*}

Check: \begin{align*}-2(630-5)^{\frac{3}{4}}+48=-2 \cdot 625^{\frac{3}{4}}+48=-2 \cdot 125+48=-250+48=-202\end{align*}

Examples

Example 1

Earlier, you were asked to verify the length of the pendulum. 

We need to plug 156.8 in to the equation \begin{align*}P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\end{align*} for L and solve. If our answer equals \begin{align*}10\pi\end{align*}, then the given length is correct.

\begin{align*}P = 2\pi{(\frac{L}{9.8})}^{\frac{1}{2}}\\ 2\pi{(\frac{156.8}{9.8})}^{\frac{1}{2}}\\ 2\pi (16)^{\frac{1}{2}}\\ 2\pi (4) = 8 \pi\end{align*}

\begin{align*}8\pi\end{align*} does not equal \begin{align*}10\pi\end{align*}, so the length cannot be 156.8.

Solve the following rational exponent equations and check for extraneous solutions.

Example 2

\begin{align*}8(3x-1)^{\frac{2}{3}}=200\end{align*}

Divide both sides by 8 and raise everything to the three-halves power.

\begin{align*}8(3x-1)^{\frac{2}{3}}&=200\\ \left[ \left(3x-1 \right)^{\frac{2}{3}}\right]^{\frac{3}{2}}&=(25)^{\frac{3}{2}}\\ 3x-1&=125\\ 3x&=126\\ x&=42\end{align*}

Check: \begin{align*}8(3(42)-1)^{\frac{2}{3}}=8(126-1)^{\frac{2}{3}}=8(125)^{\frac{2}{3}}=8 \cdot 25=200\end{align*}

Example 3

\begin{align*}6x^{\frac{3}{2}}-141=1917\end{align*}2. 

Here, only the \begin{align*}x\end{align*} is raised to the three-halves power. Subtract 141 from both sides and divide by 6. Then, eliminate the exponent by raising both sides to the two-thirds power.

\begin{align*}6x^{\frac{3}{2}}-141&=1917 \\ 6x^{\frac{3}{2}}&=2058 \\ x^{\frac{3}{2}}&=343 \\ x&=343^{\frac{2}{3}}=7^2=49\end{align*}

Check: \begin{align*}6(49)^{\frac{3}{2}}-141=6 \cdot 343-141=2058-141=1917\end{align*}

Review

Determine if the following values of x are solutions to the equation \begin{align*}3x^{\frac{3}{5}}=-24\end{align*}

  1. \begin{align*}x=32\end{align*}
  2. \begin{align*}x=-32\end{align*}
  3. \begin{align*}x=8\end{align*}

Solve the following equations. Round any decimal answers to 2 decimal places.

  1. \begin{align*}2x^{\frac{3}{2}}=54\end{align*}
  2. \begin{align*}3x^{\frac{1}{3}}+5=17\end{align*}
  3. \begin{align*}(7x-3)^{\frac{2}{5}}=4\end{align*}
  4. \begin{align*}(4x+5)^{\frac{1}{2}}=x-4\end{align*}
  5. \begin{align*}x^{\frac{5}{2}}=16x^{\frac{1}{2}}\end{align*}
  6. \begin{align*}(5x+7)^{\frac{3}{5}}=8\end{align*}
  7. \begin{align*}5x^{\frac{2}{3}}=45\end{align*}
  8. \begin{align*}(7x-8)^{\frac{2}{3}}=4(x-5)^{\frac{2}{3}}\end{align*}
  9. \begin{align*}7x^{\frac{3}{7}}+9=65\end{align*}
  10. \begin{align*}4997=5x^{\frac{3}{2}}-3\end{align*}
  11. \begin{align*}2x^{\frac{3}{4}}=686\end{align*}
  12. \begin{align*}x^3=(4x-3)^{\frac{3}{2}}\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 7.9. 

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Mar 12, 2013
Last Modified:
Jun 07, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Reviews
0 % of people thought this content was helpful.
1
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALG.933.1.L.1