Skip Navigation

11.2: Simplification of Radical Expressions

Difficulty Level: Basic Created by: CK-12
Atoms Practice
Estimated13 minsto complete
Practice Simplification of Radical Expressions
This indicates how strong in your memory this concept is
Estimated13 minsto complete
Estimated13 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Suppose that a shoemaker has determined that the optimal weight in ounces of a pair of running shoes is \begin{align*}\sqrt[4]{20000}\end{align*}. How many ounces would this be? Is there a way that you could rewrite this expression to make it easier to grasp? In this Concept, you'll learn how to simplify radical expressions like this one so that you can write them in multiple ways.


Radicals are the roots of values. In fact, the word radical comes from the Latin word “radix,” meaning “root.” You are most comfortable with the square root symbol \begin{align*}\sqrt{x}\end{align*}; however, there are many more radical symbols.

A radical is a mathematical expression involving a root by means of a radical sign.

\begin{align*}\sqrt[3]{y}=x && \text{because} \ x^3=y && \sqrt[3]{27}=3, \ because \ 3^3=27\\ \sqrt[4]{y}=x && \text{because} \ x^4=y && \sqrt[4]{16}=2 \ because \ 2^4=16\\ \sqrt[n]{y}=x && \text{because} \ x^n=y && \end{align*}

Some roots do not have real values; in this case, they are called undefined.

Even roots of negative numbers are undefined.

\begin{align*}\sqrt[n]{x}\end{align*} is undefined when \begin{align*}n\end{align*} is an even whole number and \begin{align*}x<0\end{align*}.

Example A

Evaluate the following radicals:

  • \begin{align*}\sqrt[3]{64}\end{align*}
  • \begin{align*}\sqrt[4]{-81}\end{align*}


\begin{align*}\sqrt[3]{64} = 4\end{align*} because \begin{align*}4^3=64\end{align*}

\begin{align*}\sqrt[4]{-81}\end{align*} is undefined because \begin{align*}n\end{align*} is an even whole number and \begin{align*}-81<0\end{align*}.

In a previous Concept, you learned how to evaluate rational exponents:

\begin{align*}a^{\frac{x}{y}} \ where \ x=power \ and \ y=root\end{align*}

This can be written in radical notation using the following property.

Rational Exponent Property: For integer values of \begin{align*}x\end{align*} and whole values of \begin{align*}y\end{align*}:

\begin{align*}a^{\frac{x}{y}}= \sqrt[y]{a^x}\end{align*}

Example B

Rewrite \begin{align*}x^{\frac{5}{6}}\end{align*} using radical notation.


This is correctly read as the sixth root of \begin{align*}x\end{align*} to the fifth power. Writing in radical notation, \begin{align*}x^{\frac{5}{6}}=\sqrt[6]{x^5}\end{align*}, where \begin{align*}x^5>0\end{align*}.

You can also simplify other radicals, like cube roots and fourth roots.

Example C

Simplify \begin{align*}\sqrt[3]{135}\end{align*}.


Begin by finding the prime factorization of 135. This is easily done by using a factor tree.

\begin{align*}&\sqrt[3]{135}= \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 5} = \sqrt[3]{3^3} \cdot \sqrt[3]{5}\\ & 3 \sqrt[3]{5}\end{align*}

Guided Practice

Evaluate \begin{align*}\sqrt[4]{4^2}\end{align*}.

Solution: This is read, “The fourth root of four to the second power.”


The fourth root of 16 is 2; therefore,



Sample explanations for some of the practice exercises below are available by viewing the following videos. Note that there is not always a match between the number of the practice exercise in the videos and the number of the practice exercise listed in the following exercise set. However, the practice exercise is the same in both. CK-12 Basic Algebra: Radical Expressions with Higher Roots (8:46)

  1. For which values of \begin{align*}n\end{align*} is \begin{align*}\sqrt[n]{-16}\end{align*} undefined?

Evaluate each radical expression.

  1. \begin{align*}\sqrt{169}\end{align*}
  2. \begin{align*}\sqrt[4]{81}\end{align*}
  3. \begin{align*}\sqrt[3]{-125}\end{align*}
  4. \begin{align*}\sqrt[5]{1024}\end{align*}

Write each expression as a rational exponent.

  1. \begin{align*}\sqrt[3]{14}\end{align*}
  2. \begin{align*}\sqrt[4]{zw}\end{align*}
  3. \begin{align*}\sqrt{a}\end{align*}
  4. \begin{align*}\sqrt[9]{y^3}\end{align*}

Write the following expressions in simplest radical form.

  1. \begin{align*}\sqrt{24}\end{align*}
  2. \begin{align*}\sqrt{300}\end{align*}
  3. \begin{align*}\sqrt[5]{96}\end{align*}
  4. \begin{align*}\sqrt{\frac{240}{567}}\end{align*}
  5. \begin{align*}\sqrt[3]{500}\end{align*}
  6. \begin{align*}\sqrt[6]{64x^8}\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More


radical A mathematical expression involving a root by means of a radical sign. The word radical comes from the Latin word radix, meaning root.
Rational Exponent Property For integer values of x and whole values of y: a^{\frac{x}{y}}= \sqrt[y]{a^x}
Radical Expression A radical expression is an expression with numbers, operations and radicals in it.
Rationalize the denominator To rationalize the denominator means to rewrite the fraction so that the denominator no longer contains a radical.
Variable Expression A variable expression is a mathematical phrase that contains at least one variable or unknown quantity.

Image Attributions

Show Hide Details
Difficulty Level:
8 , 9
Date Created:
Feb 24, 2012
Last Modified:
Apr 28, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original