<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Due to system maintenance, CK-12 will be unavailable on Friday,8/19/2016 from 6:00p.m to 10:00p.m. PT.

12.5: Multiplication of Rational Expressions

Difficulty Level: Basic Created by: CK-12
Estimated20 minsto complete
%
Progress
Practice Multiplication of Rational Expressions
Progress
Estimated20 minsto complete
%

Suppose you were playing a game on your cell phone in which you were randomly given two rational expressions and were asked to identify the product of the two expressions. If one of the expressions were x2+3x+2x9\begin{align*} \frac {x^2+3x+2}{x-9}\end{align*} and the other expression were x210x+9x24\begin{align*} \frac {x^2-10x+9}{x^2-4}\end{align*}, would you be able to multiply them together? Could the product be simplified? In this Concept, you'll learn about the multiplication of rational expressions such as these.

Guidance

Because a rational expression is really a fraction, two (or more) rational expressions can be combined through multiplication and/or division in the same manner as numerical fractions. A reminder of how to multiply fractions is below.

For any rational expressions a0,b0,c0,d0\begin{align*}a \neq 0, b \neq 0, c \neq 0, d \neq 0\end{align*},

abcd=acbdab÷cdabdc=adbc\begin{align*}\frac{a}{b} \cdot \frac{c}{d}= \frac{ac}{bd}\\ \frac{a}{b} \div \frac{c}{d} \rightarrow \frac{a}{b} \cdot \frac{d}{c}=\frac{ad}{bc}\end{align*}

Example A

Multiply the following: a16b84b35a2\begin{align*}\frac{a}{16b^8} \cdot \frac{4b^3}{5a^2}\end{align*}.

Solution:

a16b84b35a24ab380a2b8\begin{align*}\frac{a}{16b^8} \cdot \frac{4b^3}{5a^2} \rightarrow \frac{4ab^3}{80a^2 b^8}\end{align*}

Simplify exponents using methods learned in previous Concepts.

4ab380a2b8=120ab5\begin{align*}\frac{4ab^3}{80a^2 b^8}=\frac{1}{20ab^5}\end{align*}

Example B

Simplify 9c24y221c4\begin{align*}9c^2 \cdot \frac{4y^2}{21c^4}\end{align*}.

Solution:

9c24y221c49c214y221c49c214y221c4=36c2y221c436c2y221c4=12y27c2\begin{align*}9c^2 \cdot \frac{4y^2}{21c^4} \rightarrow \frac{9c^2}{1} \cdot \frac{4y^2}{21c^4}\\ \frac{9c^2}{1} \cdot \frac{4y^2}{21c^4}=\frac{36c^2 y^2}{21c^4}\\ \frac{36c^2 y^2}{21c^4}=\frac{12y^2}{7c^2}\end{align*}

Multiplying Rational Expressions Involving Polynomials

When rational expressions become complex, it is usually easier to factor and reduce them before attempting to multiply the expressions.

Example C

Multiply 4x+123x2xx29\begin{align*}\frac{4x+12}{3x^2} \cdot \frac{x}{x^2-9}\end{align*}.

Solution:

Factor all pieces of these rational expressions and reduce before multiplying.

4x+123x2xx294(x+3)3x2x(x+3)(x3)4(x+3)3x2x(x+3)(x3)43x1x343x29x\begin{align*}\frac{4x+12}{3x^2} \cdot & \frac{x}{x^2-9} \rightarrow \frac{4(x+3)}{3x^2} \cdot \frac{x}{(x+3)(x-3)}\\ & \frac{4\cancel{(x+3)}}{3x^{\cancel{2}}} \cdot \frac{\cancel{x}}{\cancel{(x+3)}(x-3)}\\ & \frac{4}{3x} \cdot \frac{1}{x-3} \rightarrow \frac{4}{3x^2-9x}\end{align*}

-->

Guided Practice

Multiply 12x2x6x21x2+7x+64x227x+18\begin{align*}\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}\end{align*}.

Solution: Factor all pieces, reduce, and then multiply.

12x2x6x21x2+7x+64x227x+18(3x+2)(4x3)(x+1)(x1)(x+1)(x+6)(4x3)(x6)12x2x6x21x2+7x+64x227x+18(3x+2)(4x3)(x+1)(x1)(x+1)(x+6)(4x3)(x6)(3x+2)(x+6)(x1)(x6)=3x2+20x+12x27x+6\begin{align*}\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18} & \rightarrow \frac{(3x+2)(4x-3)}{(x+1)(x-1)} \cdot \frac{(x+1)(x+6)}{(4x-3)(x-6)}\\ \frac{(3x+2)\cancel{(4x-3)}}{\cancel{(x+1)}(x-1)} \cdot \frac{\cancel{(x+1)}(x+6)}{\cancel{(4x-3)}(x-6)} & \rightarrow \frac{(3x+2)(x+6)}{(x-1)(x-6)}\\ \frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18} &= \frac{3x^2+20x+12}{x^2-7x+6}\end{align*}

Explore More

Sample explanations for some of the practice exercises below are available by viewing the following video. Note that there is not always a match between the number of the practice exercise in the video and the number of the practice exercise listed in the following exercise set. However, the practice exercise is the same in both. CK-12 Basic Algebra: Multiplying and Dividing Rational Expressions (9:19)

In 1–10, perform the indicated operation and reduce the answer to lowest terms

1. x32y32y2x\begin{align*}\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}\end{align*}
2. 2xy24y5x\begin{align*}\frac{2x}{y^2} \cdot \frac{4y}{5x}\end{align*}
3. 2xy2y2x3\begin{align*}2xy \cdot \frac{2y^2}{x^3}\end{align*}
4. 4y21y29y32y1\begin{align*}\frac{4y^2-1}{y^2-9} \cdot \frac{y-3}{2y-1}\end{align*}
5. 6aba2a3b3b2\begin{align*}\frac{6ab}{a^2} \cdot \frac{a^3b}{3b^2}\end{align*}
6. 33a252011a3\begin{align*}\frac{33a^2}{-5} \cdot \frac{20}{11a^3}\end{align*}
7. 2x2+2x24x2+3xx2+x6x+4\begin{align*}\frac{2x^2+2x-24}{x^2+3x} \cdot \frac{x^2+x-6}{x+4}\end{align*}
8. xx5x28x+15x23x\begin{align*}\frac{x}{x-5} \cdot \frac{x^2-8x+15}{x^2-3x}\end{align*}
9. 5x2+16x+336x225(6x2+5x)\begin{align*}\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)\end{align*}
10. x2+7x+10x29x23x3x2+4x4\begin{align*}\frac{x^2+7x+10}{x^2-9} \cdot \frac{x^2-3x}{3x^2+4x-4}\end{align*}

Mixed Review

1. The time it takes to reach a destination varies inversely as the speed in which you travel. It takes 3.6 hours to reach your destination traveling 65 miles per hour. How long would it take to reach your destination traveling 78 miles per hour?
2. Solve for r\begin{align*}r\end{align*} and graph the solution on a number line: 24|2r+3|\begin{align*}-24 \ge |2r+3|\end{align*}.
3. What is true of any line parallel to 5x+9y=36\begin{align*}5x+9y=-36\end{align*}?
4. Solve for d:3+5d=d(3x3)\begin{align*}d: 3+5d=-d-(3x-3)\end{align*}.
5. Graph and determine the domain and range: y9=x25x\begin{align*}y-9=-x^2-5x\end{align*}.

To view the Explore More answers, open this PDF file and look for section 12.5.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Vocabulary Language: English

Rational Expression

A rational expression is a fraction with polynomials in the numerator and the denominator.

Show Hide Details
Description
Difficulty Level:
Basic
Tags:
Subjects:

8 , 9
Date Created:
Feb 24, 2012