<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

2.13: Order of Real Numbers

Difficulty Level: Basic Created by: CK-12
Atoms Practice
Estimated9 minsto complete
Practice Order of Real Numbers
This indicates how strong in your memory this concept is
Estimated9 minsto complete
Estimated9 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Suppose that you and three friends were playing a game where you each drew a number from a hat and the person with the highest number won. Let's say that you drew the number 32, while your friends drew the numbers 3, 1.7, and π3, respectively. Could you figure out who won the game? 

Ordering Real Numbers

Classifying Real Numbers

The chart above shows the relationships between different real numbers. If a number is in one category, it is also in all the categories connected above it.

Let's use the chart to categorize the following numbers:

  1. 0

Zero is a whole number, an integer, a rational number, and a real number.

  1. –1

 –1 is an integer, a rational number, and a real number.

  1. π3

π3 is an irrational number and a real number.

  1. 369

369=69=23. This is a rational number and a real number.



Graphing and Ordering Real Numbers

Every real number can be positioned between two integers. Many times you will need to organize real numbers to determine the least value, greatest value, or both. This is usually done on a number line.

Let's plot the following rational numbers on a number line:

  1. 23

23=0.6¯¯¯, which is between 0 and 1.

  1. 37

37 is between –1 and 0.

  1. 5716


Now, let's compare π15 and 375:

First we simplify in order to better compare:


Now we rewrite π15 to compare it to 15:


Since π>3,




Therefore, π15>375.




Example 1

Earlier, you were asked to determine which number out of 323, 1.7, and π3 is the highest.

Notice that 32=1.5.

Also, since π3.14,  π31.

Using a calculator,  31.73.

Thus the order of the numbers is π3<32<1.7<3 and 3  is the largest number. 

Example 2

For the numbers: 122,1.53,32,2520, classify each number.

We need to simplify the numbers in order to classify them:

122=4×32=232=3. This is an irrational number. An irrational numbers is a type of real number.

1.53. This number cannot be simplified, but since it is a multiple of an irrational number, it is also irrational. In other words, we cannot get rid of the irrational part, and so we cannot write it as a rational number. It is also a real number.

32. Since this number is in the form of a proper fraction, it is also a rational number and real number.

2520=254×5=2525=1. This number can be simplified to an integer. All integers can be expressed as rational numbers and are a special kind of real number.

Example 3

For the numbers: 122,1.53,32,2520, order the four numbers.

The four numbers are ordered as follows: 1<32<3<1.53.

1<32 since the numerator is larger then the denominator and 32=1.5.

32<3 since we can see on our calculators that 31.7

3<1.53 since multiplying by 1.5 makes any number larger.


Classify the following numbers. Include all the categories that apply to the number.

  1. 0.25
  2. 1.35
  3. 20
  4. 25
  5. 100
  6. Place the following numbers in numerical order from lowest to highest. 6261501.51613
  7. Find the value of each marked point.

Mixed Review

  1. Simplify \begin{align*}\frac{9}{4}\div 6\end{align*}.
  2. The area of a triangle is given by the formula \begin{align*}A= \frac{b(h)}{2}\end{align*}, where \begin{align*}b=\end{align*} base of the triangle and \begin{align*}h =\end{align*} height of the triangle. Determine the area of a triangle with base \begin{align*}= 3\end{align*} feet and height \begin{align*}= 7\end{align*} feet.
  3. Reduce the fraction \begin{align*}\frac{144}{6}\end{align*}.
  4. Construct a table for the following situation: Tracey jumps 60 times per minute. Let the minutes be \begin{align*}\left \{0,1,2,3,4,5,6\right \}\end{align*}. What is the range of this function?

Review (Answers)

To see the Review answers, open this PDF file and look for section 2.13. 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


rational number

A number that can be written in the form \frac{a}{b}, where a and b are integers and b \ne 0.

real number

Any number that is not an imaginary number. Integers and rational numbers are special kinds of real numbers.

Image Attributions

Show Hide Details
Difficulty Level:
8 , 9
Date Created:
Feb 24, 2012
Last Modified:
Aug 25, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original