<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Biology Concepts Go to the latest version.

4.11: Gene Expression

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Practice Gene Expression
Practice Now

Can your expression change at any moment?

As you know, a person's expression can change moment by moment. The expression that is demonstrated is usually appropriate for that moment's feelings. Gene expression is the use of a gene whose product is necessary for that moment. It may be a moment during development, it may be a moment of increased anxiety, or it may be in response to an environmental change. Whenever a particular protein is needed, gene expression provides it.

Gene Expression

Each of your cells has at least 20,000 genes. In fact, all of your cells have the same genes. Do all of your cells make the same proteins? Obviously not. If they did, then all your cells would be alike. Instead, you have cells with different structures and functions. This is because different cells make different proteins. They do this by using, or expressing, different genes. Using a gene to make a protein is called gene expression .

How Gene Expression is Regulated

Gene expression is regulated to ensure that the correct proteins are made when and where they are needed. Regulation may occur at any point in the expression of a gene, from the start of transcription to the processing of a protein after translation. Following is a list of stages where gene expression is regulated:

  • Chemical and structural modification of DNA or chromatin
  • Transcription
  • Translation
  • Post-transcriptional modification
  • RNA transport
  • mRNA degradation
  • Post-translational modifications

As shown in Figure below , transcription is controlled by regulatory proteins binding to the DNA. Specifically, gene regulation at the level of transcription controls when transcription occurs as well as how much RNA is created. A regulatory protein, or a transcription factor , is a protein involved in regulating gene expression. It is usually bound to a cis-regulatory element , which is part of the DNA. Regulatory proteins often must be bound to a cis-regulatory element to switch a gene on ( activator ), or to turn a gene off ( repressor ).

Transcription of a gene by RNA polymerase can be regulated by at least five mechanisms:

  • Specificity factors (proteins) alter the specificity of RNA polymerase for a promoter or set of promoters, making it more or less likely to bind to the promoter and begin transcription.
  • Activator proteins enhance the interaction between RNA polymerase and a particular promoter.
  • Repressor proteins bind to non-coding sequences on the DNA that are close to or overlap the promoter region, impeding RNA polymerase's progress along the strand.
  • Basal factors are transcription factors that help position RNA polymerase at the start of a gene.
  • Enhancers are sites on the DNA strand that are bound by activators in order to loop the DNA, bringing a specific transcription factor to the initiation complex. An initiation complex is composed of RNA polymerase and transcription factors.

As the organism grows more sophisticated, gene regulation becomes more complex, though prokaryotic organisms possess some highly regulated systems. Some human genes are controlled by many activators and repressors working together. Obviously, a mutation in a cis-regulatory region, such as the promoter, can greatly affect the proper expression of a gene. It may keep the gene permanently off, such that no protein can be made, or it can keep the gene permanently on, such that the corresponding protein is constantly made. Both of these can have detremental effects on the cell.

Regulation of Transcription. Regulatory proteins bind to regulatory elements to control transcription. The regulatory elements are embedded within the DNA.


  • Gene transcription is controlled by regulatory proteins that bind to regulatory elements on DNA.
  • The proteins usually either activate or repress transcription.


Use this resource to answer the questions that follow.

  1. What percentage of its genes does a typical human cell express?
  2. List three ways gene expression may be regulated.
  3. Draw a diagram of an enhancer interacting with its promoter.
  4. Compare euchromatin to heterochromatin.
  5. Discuss how chromosomal rearrangements may effect gene expression.


1. What is gene expression?

2. Describe how regulatory proteins regulate gene expression.




Regulatory protein that enhances the interaction between RNA polymerase and a particular promoter.
cis-regulatory element

cis-regulatory element

Regulatory segment of DNA; site where a transcription factor may bind.


Sites on the DNA strand that are bound by activators; brings a transcription factor to the initiation complex.
initiation complex

initiation complex

Complex composed of RNA polymerase and transcription factors; needed for transcription to begin.
regulatory protein

regulatory protein

DNA-binding protein that regulates gene expression.


Proteins that bind to non-coding sequences on DNA that are close to the promoter region; impedes RNA polymerase's progress along the strand.
transcription factor

transcription factor

A DNA-binding protein involved in regulating gene expression.

Image Attributions


Difficulty Level:

At Grade


Date Created:

Feb 24, 2012

Last Modified:

Oct 17, 2015
Files can only be attached to the latest version of Modality


Please wait...
Please wait...
Image Detail
Sizes: Medium | Original

Original text