<meta http-equiv="refresh" content="1; url=/nojavascript/">
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Calculus Go to the latest version.

2.4: Derivatives of Trigonometric Functions

Difficulty Level: At Grade Created by: CK-12

Learning Objectives

A student will be able to:

  • Compute the derivatives of various trigonometric functions.

If the angle h is measured in radians,

 \lim_{h \to 0} \frac{\sin h} {h} = 1 and \lim_{h \to 0} \frac{1 - \cos h} {h} = 0.

We can use these limits to find an expression for the derivative of the six trigonometric functions \sin x, \cos x, \tan x, \sec x,  \csc x, and \cot x. We first consider the problem of differentiating \sin x, using the definition of the derivative.

 \frac{d} {dx} [\sin x] = \lim_{h \to 0} \frac{\sin(x + h) - \sin x} {h}


\sin(\alpha + \beta) = \sin \alpha\ \cos \beta + \cos \alpha\ \sin \beta.

The derivative becomes

\frac{d} {dx} [\sin x] & = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x} {h}\\& = \lim_{h \to 0} \left [\sin x \left (\frac{\cos h - 1} {h} \right ) + \cos x \left (\frac {\sin h} {h} \right) \right]\\& = -\!\sin x \cdot \lim_{h \to 0} \left (\frac{1 - \cos h} {h} \right) + \cos x \cdot \lim_{h \to 0} \left (\frac{\sin h} {h} \right)\\& = -\!\sin x \cdot (0) + \cos x \cdot (1)\\& = \cos x.


\frac {d}{dx} [\sin x] = \cos x.

It will be left as an exercise to prove that

\frac {d}{dx}[\cos x] = -\!\sin x.

The derivatives of the remaining trigonometric functions are shown in the table below.

Derivatives of Trigonometric Functions

\frac {d}{dx}[\sin x] & = \cos x\\\frac {d}{dx}[\cos x] & = -\!\sin x\\\frac {d}{dx}[\tan x] & = {\sec^2x}\\\frac {d}{dx}[\sec x] & = {\sec x}\ {\tan x}\\\frac {d}{dx}[\csc x] & = {-\!\csc x}\ {\cot x}\\\frac {d}{dx}[\cot x] & = {-\!\csc^2 x}

Keep in mind that for all the derivative formulas for the trigonometric functions, the argument x is measured in radians.

Example 1:

Show that  \frac {d}{dx} [\tan x] = \sec^2 x.


It is possible to prove this relation by the definition of the derivative. However, we use a simpler method.


 \tan x =\frac{\sin x}{\cos x},


\frac {d}{dx}[\tan x] &= \frac {d}{dx}\left [\frac{\sin x}{\cos x}\right]\\\text{Using~the~quotient~rule,}\\&= \frac{(\cos x)(\cos x) - (\sin x)(-\!\sin x)}{\cos^2 x}\\&= \frac {\cos^2 x + \sin^2 x}{\cos^2 x}\\&= \frac {1}{\cos^2 x}\\&= {\sec^2 x}

Example 2:

Find f'(x) \mathrm{~if~} f(x) = x^{2} \cos x + \sin x.


Using the product rule and the formulas above, we obtain

f'(x) &= x^2 (-\!\sin x) + 2x \cos x + \cos x\\&= - x^2 \sin x + 2x \cos x + \cos x.

Example 3:

Find dy/dx if  y = \frac {\cos x}{1-\tan x} . What is the slope of the tangent line at x = \pi/3?


Using the quotient rule and the formulas above, we obtain

\frac {dy}{dx} &= \frac {(1-\tan x)(-\!\sin x) - (\cos x)(-\!\sec^2 x)} {(1-\tan x)^2}\\ &= \frac {-\!\sin x + \tan x \sin x + \cos x \sec^2 x}{(1- \tan x)^2}\\ &= \frac {-\!\sin x + \tan x \sin x + \sec x}{(1- \tan x)^2}

To calculate the slope of the tangent line, we simply substitute x = \pi/3:

 \frac {dy}{dx} \Bigg|_{x = \frac {\pi}{3}} =  \frac {-\!\sin( \frac{\pi}{3} ) + \tan ( \frac{\pi}{3} ) \sin ( \frac{\pi}{3} ) + \sec( \frac{\pi}{3} )} {(1 - \tan( \frac{\pi}{3} ))^2}.

We finally get the slope to be approximately

 \frac {dy}{dx} \Bigg|_{x = \frac {\pi}{3}} = 4.9.

Example 4:

If y = \sec x, find y'' (\pi/3).


y' &= \sec x \tan x\\y''   &= \sec x (\sec^2 x) + (\sec x \tan x) \tan x\\&= \sec^3 x + \sec x \tan^2 x.

Substituting for x = \pi/3,

y'' &= \sec^3 \left(\frac{\pi}{3}\right) + \sec \left(\frac{\pi}{3}\right) \tan^2 \left(\frac{\pi}{3}\right)\\&= (2)^3 + (2)(\sqrt{3})^2\\ &= 8 + (2)(3)\\&= 14.

Thus y'' (\pi/3) = 14.

Multimedia Links

For examples of finding the derivatives of trigonometric functions (4.4), see Math Video Tutorials by James Sousa, The Derivative of Sine and Cosine (9:21).

Review Questions

Find the derivative y' of the following functions:

  1. y = x \sin x + 2
  2. y = x^2 \cos x - x \tan x - 1
  3. y = \sin^2 x
  4.  y = \frac {\sin x-1}{\sin x+1}
  5.  y = \frac {\cos x+\sin x} {\cos x - \sin x}
  6.  y = \frac {\sqrt {x}}{\tan x} + 2
  7. y = \csc x \sin x + x
  8.  y = \frac {\sec x} {\csc x}
  9. If y = \csc x, find y'' (\pi/6).
  10. Use the definition of the derivative to prove that  \frac {d}{dx}[\cos x] = - \sin x.

Review Answers

  1. y' = x \cos x + \sin x
  2. y' = 2x \cos x - x^2 \sin x - \tan x - x \sec^2 x
  3. y' = 2 \cos x \sin x
  4.  y' =\frac  {2 \cos x} {(\sin x+1)^2}
  5. y' = 1 +\left ( \frac{\tan x+1}{1-\tan x} \right )^2
  6.  y' =\frac {\cot} {2 \sqrt {x}} - \sqrt {x} \csc^2 x
  7. y' = 1
  8. y' = \sec^2 x
  9. y(\pi/6) = 14

\frac{d \cos x}{dx} &= \lim_{h \to 0} \frac{\cos(x +h) - \cos x}{h}\\&= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h} \ \text{(From the identity for cosine angle sum).}\\&= \lim_{h \to 0} \left [ \cos x \left ( \frac{\cos h - 1}{h} \right ) - \sin x \left ( \frac{\sin h}{h} \right ) \right]\\&= \lim_{h \to 0} \cos x \left ( \frac{\cos h - 1}{h} \right ) - \lim_{h \to 0} \sin x \left( \frac{\sin h}{h} \right )\\&= \cos x \lim_{h \to 0} \left ( \frac{\cos h - 1}{h} \right ) - \sin x \lim_{h \to 0} \left ( \frac{\sin h}{h} \right )\\&= \cos x (0) - \sin x(1) \ \text{(with a note that these two limits are demonstrated in the multimedia links).}\\&= - \sin x

Image Attributions




Date Created:

Feb 23, 2012

Last Modified:

Feb 26, 2015
Files can only be attached to the latest version of None


Please wait...
Please wait...
Image Detail
Sizes: Medium | Original

Help us improve the site! Which of the following best describes your visit today?

I'm a student and I found this site on my own.
I'm a student and my teacher told me to come to this site.
I'm a teacher looking for materials to use in class.
I'm preparing for teacher certification exam, e.g. Praxis II.

Thanks for answering this poll. Your feedback will help us continue to improve the site!

Original text