<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

5.4: Area of a Surface of Revolution

Difficulty Level: At Grade Created by: CK-12

Learning Objectives

A student will be able to:

  • Learn how to find the area of a surface that is generated by revolving a curve about an axis or a line.

In this section we will deal with the problem of finding the area of a surface that is generated by revolving a curve about an axis or a line. For example, the surface of a sphere can be generated by revolving a semicircle about its diameter (Figure 19) and the circular cylinder can be generated by revolving a line segment about any axis that is parallel to it (Figure 20).

Figure 19

Figure 20

Area of a Surface of Revolution

If \begin{align*}f\end{align*} is a smooth and non-negative function in the interval \begin{align*}[a, b],\end{align*} then the surface area \begin{align*}S\end{align*} generated by revolving the curve \begin{align*}y = f(x)\end{align*} between \begin{align*}x = a\end{align*} and \begin{align*}x = b\end{align*} about the \begin{align*}x-\end{align*}axis is defined by

\begin{align*} S = \int_{a}^{b} 2 \pi f(x) \sqrt{1 + [f'(x)]^2} dx = \int_{a}^{b} 2 \pi y \sqrt{1 + \left (\frac{dy} {dx}\right )^2} dx.\end{align*}

Equivalently, if the surface is generated by revolving the curve about the \begin{align*}y-\end{align*}axis between \begin{align*}y = c\end{align*} and \begin{align*}y = d,\end{align*} then

\begin{align*} S = \int_{c}^{d} 2 \pi g (y) \sqrt{1 + [g'(y)]^2} dy = \int_{c}^{d} 2 \pi x \sqrt{1 + \left (\frac{dx} {dy}\right )^2}dy.\end{align*}

Example 1:

Find the surface area that is generated by revolving \begin{align*}y = x^3\end{align*} on \begin{align*}[0, 2]\end{align*} about the \begin{align*}x-\end{align*}axis (Figure 21).

Solution:

Figure 21

The surface area \begin{align*}S\end{align*} is

\begin{align*}S &= \int_{a}^{b} 2 \pi y \sqrt{1 + \left (\frac{dy} {dx}\right )^2} dx \\ &= \int_{0}^{2} 2 \pi x^3 \sqrt{1 + (3x^2)^2} dx \\ &= 2\pi \int_{0}^{2} x^3 (1 + 9x^4)^{1/2} dx.\end{align*}

Using \begin{align*}u-\end{align*}substitution by letting \begin{align*}u = 1 + 9x^4,\end{align*}

\begin{align*}S &= 2 \pi \int_{1}^{145} u^{1/2} \frac{du}{36} \\ &= \frac{2 \pi}{36} \left [\frac{2} {3} u^{3/2}\right ]^{145}_{1} \\ &= \frac{2 \pi}{36}\cdot \frac{2} {3} \left [(145)^{3/2} - 1\right ]\\ &\approx \frac{4\pi} {108} [1745]\\ &\approx 203\end{align*}

Example 2:

Find the area of the surface generated by revolving the graph of \begin{align*}f(x) = x^2\end{align*} on the interval \begin{align*}[0, \sqrt{3}]\end{align*} about the \begin{align*}y-\end{align*}axis (Figure 22).

Solution:

Figure 22

Since the curve is revolved about the \begin{align*}y-\end{align*}axis, we apply

\begin{align*} S = \int_{c}^{d} 2 \pi x \sqrt{1 + \left (\frac{dx} {dy}\right )^2} dy.\end{align*}

So we write \begin{align*}y = x^2\end{align*} as \begin{align*} x = \sqrt{y}\end{align*}. In addition, the interval on the \begin{align*}x-\end{align*}axis \begin{align*} [0, \sqrt{3}]\end{align*} becomes \begin{align*}[0, 3].\end{align*} Thus

\begin{align*} S = \int_{0}^{3} 2 \pi \sqrt{y} \sqrt{1 + \left (\frac{1} {2\sqrt{y}}\right )^2} dy.\end{align*}

Simplifying,

\begin{align*} S = \pi \int_{0}^{3} \sqrt{4y + 1} dy.\end{align*}

With the aid of \begin{align*}u-\end{align*}substitution, let \begin{align*}u = 4y + 1,\end{align*}

\begin{align*}S &= \frac{\pi} {4} \int_{1}^{13} u^{1/2} du \\ &= \frac{\pi} {6} \left [(13)^{3/2} - 1\right ] \\ &= \frac{\pi} {6} [46.88 - 1]\\ &\approx 24\end{align*}

Multimedia Links

For video presentations of finding the surface area of revolution (16.0), see Math Video Tutorials by James Sousa, Surface Area of Revolution, Part 1 (9:47)

and Math Video Tutorials by James Sousa, Surface Area of Revolution, Part 2 (5:43).

Review Questions

In problems #1 - 3 find the area of the surface generated by revolving the curve about the \begin{align*}x-\end{align*}axis.

  1. \begin{align*} y = 3x , 0 \le x \le 1\end{align*}
  2. \begin{align*} y = \sqrt{x}, 1 \le x \le 9\end{align*}
  3. \begin{align*} y = \sqrt{4 - x^2}, -1 \le x \le 1\end{align*}

In problems #4–6 find the area of the surface generated by revolving the curve about the \begin{align*}y-\end{align*}axis.

  1. \begin{align*} x = 7y + 2, 0 \le y \le 3\end{align*}
  2. \begin{align*} x = y^3, 0 \le y \le 8\end{align*}
  3. \begin{align*} x = \sqrt{9 - y^2}, -2 \le y \le 2\end{align*}
  4. Show that the surface area of a sphere of radius \begin{align*}r\end{align*} is \begin{align*} 4\pi r^2\end{align*}.
  5. Show that the lateral area \begin{align*}S\end{align*} of a right circular cone of height \begin{align*}h\end{align*} and base radius \begin{align*}r\end{align*} is

\begin{align*} S = \pi r \sqrt{r^2 + h^2}.\end{align*}

Review Answers

  1. \begin{align*} 3 \pi \sqrt{10}\end{align*}
  2. \begin{align*} \approx 112\end{align*}
  3. \begin{align*} 8 \pi\end{align*}
  4. \begin{align*} 75 \pi \sqrt{50}\end{align*}
  5. \begin{align*} \approx 823583\end{align*}
  6. \begin{align*} 24\pi\end{align*}
  7. We can create a sphere of radius \begin{align*}r\end{align*} by rotating a semicircle of radius \begin{align*}r\end{align*} around the \begin{align*}x-\end{align*}axis. The formula for a circle of radius \begin{align*}r\end{align*} is \begin{align*}x^2+y^2=r^2\end{align*}, and we can solve for \begin{align*}y\end{align*} to get the equation for the semicircle: \begin{align*}y=\sqrt{r^2-x^2}= (r^2-x^2)^{\frac{1}{2}}\end{align*}. Then we can also solve for: \begin{align*}\frac{dy}{dx} = \frac{1}{2} (-2x)(r^2-x^2)^{\frac{-1}{2}} = -x (r^2-x^2)^{\frac{-1}{2}}\end{align*} and so \begin{align*}\left(\frac{dy}{dx}\right)^2 = x^2 (r^2-x^2)^{-1}\end{align*}. Now we can plug all this into the integral that gives us the surface area, integrating from \begin{align*}-r \le x \le r\end{align*}:

\begin{align*}A &= \int_{-r}^{r} 2 \pi y \sqrt{1+[y^{\prime}]^2}dx\\ A &= \int_{-r}^{r} 2 \pi (r^2-x^2)^{\frac{1}{2}} \sqrt{1+(x^2(r^2-x^2)^{-1})}dx\\ A &= \int_{-r}^{r} 2 \pi \sqrt{(r^2-x^2) (1+(x^2(r^2-x^2)^{-1}))}dx\\ A &= \int_{-r}^{r} 2 \pi \sqrt{r^2-x^2+x^2}dx\\ A &= 2 \pi r \int_{-r}^{r} dx\\ A &= 2 \pi r (x) \Big |_{-r}^r\\ A &= 4 \pi r^2\end{align*}

  1. We can create this right circular cone by rotating a line around the \begin{align*}x-\end{align*}axis over the interval \begin{align*}0 \le x \le h\end{align*}. Two points we know that have to be on the line are \begin{align*}(0, r)\end{align*} and \begin{align*}(h, 0)\end{align*}, which then gives us an equation for the line of \begin{align*}y = - \frac{r}{h}x+r\end{align*}. Then we can determine the derivative of \begin{align*}y\end{align*} with respect to \begin{align*}x: y^{\prime} = - \frac{r}{h}\end{align*}, and so \begin{align*}(y^{\prime})^2 = \frac{r^2}{h^2}\end{align*}. And now we are ready to calculate the integral that gives the lateral surface area:

\begin{align*}S &= \int_0^h 2 \pi y \sqrt{1+[y^{\prime}]^2}dx\\ S &= \int_0^h 2 \pi \left(- \frac{r}{h}x + r \right) \sqrt{1+ \frac{r^2}{h^2}}dx\\ S &= 2 \pi \sqrt{\frac{h^2}{h^2} + \frac{r^2}{h^2}} \left( - \frac{r}{h} \left(\frac{x^2}{2}\right)+rx\right) \Bigg |_0^h\\ S &= \frac{2 \pi}{h} \sqrt{h^2+r^2} \left(\frac{-rh}{2}+rh\right)\\ S &= \pi r \sqrt{h^2+r^2}\end{align*}

Image Attributions

Show Hide Details
Description
Subjects:
Grades:
Date Created:
Feb 23, 2012
Last Modified:
Jun 10, 2016
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.MAT.ENG.SE.1.Calculus.5.4