<meta http-equiv="refresh" content="1; url=/nojavascript/">
Dismiss
Skip Navigation

17.12: Multi-Step Problems with Changes of State

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
0%
Progress
Practice Multi-Step Problems with Changes of State
Practice
Progress
0%
Practice Now

A large amount of heat is needed to make a substance undergo a change of state

Credit: Boiling water: Image copyright Steven Coling, 2014; Ice cubes: Image copyright Zoom Team, 2014
Source: http://www.shutterstock.com
License: CC BY-NC 3.0

Which takes more heat – melting or boiling?

You have a cube of ice. Which process will take more energy – the melting of that ice cube or the conversion of the water to steam? The short answer is that more energy is needed to convert the water to steam. The long answer is really a question: how do you get from one point to the other? What is the temperature of the ice? What is the mass of that ice cube? A lot goes into taking the material from the starting point to the end-point.

Multi-Step Problems with Changes of State

Heating curves show the phase changes that a substance undergoes as heat is continuously absorbed.

Heating curves show the phase changes that a substance undergoes as heat is continuously absorbed.

Credit: CK-12 Foundation - Christopher Auyeung
Source: CK-12 Foundation
License: CC BY-NC 3.0

Heating curve of water. [Figure2]

The specific heat of a substance allows us to calculate the heat absorbed or released as the temperature of the substance changes. It is possible to combine that type of problem with a change of state to solve a problem involving multiple steps. The Figure above shows ice at -30°C being converted in a five-step process to gaseous water (steam) at 140°C. It is now possible to calculate the heat absorbed during that entire process. The process and the required calculation is summarized below.

  1. Ice is heated from -30°C to 0°C. The heat absorbed is calculated by using the specific heat of ice and the equation ΔH=cp×m×ΔT .
  2. Ice is melted at 0°C. The heat absorbed is calculated by multiplying the moles of ice by the molar heat of fusion.
  3. Water at 0°C is heated to 100°C. The heat absorbed is calculated by using the specific heat of water and the equation ΔH=cp×m×ΔT .
  4. Water is vaporized to steam at 100°C. The heat absorbed is calculated by multiplying the moles of water by the molar heat of vaporization.
  5. Steam is heated from 100°C to 140°C. The heat absorbed is calculated by using the specific heat of steam and the equation ΔH=cp×m×ΔT .

Sample Problem: Multi-Step Problems using a Heating Curve

Calculate the total amount of heat absorbed (in kJ) when 2.00 mol of ice at -30.0°C is converted to steam at 140.0°C. The required specific heats can be found in the table in "Heat Capacity and Specific Heat".

Step 1: List the known quantities and plan the problem .

Known

  • 2.00 mol ice = 36.04 g ice
  • cp(ice)=2.06 J/gC
  • cp(water)=4.18 J/gC
  • cp(steam)=1.87 J/gC
  • ΔHfus=6.01 kJ/mol
  • ΔHvap=40.7 kJ/mol

Unknown

  • ΔHtotal=? kJ

Follow the steps previously described. Note that the mass of the water is needed for the calculations that involve the specific heat, while the moles of water is needed for the calculations that involve changes of state. All heat quantities must be in kilojoules so that they can be added together to get a total for the five-step process.

Step 2: Solve .

  1. ΔH1=2.06 J/gC×36.04 g×30C×1 kJ1000 J=2.23 kJ
  2. ΔH2=2.00 mol×6.01 kJ1 mol=12.0 kJ
  3. ΔH3=4.18 J/gC×36.04 g×100C×1 kJ1000 J=15.1 kJ
  4. ΔH4=2.00 mol×40.7 kJ1 mol=81.4 kJ
  5. ΔH5=1.87 J/gC×36.04 g×40C×1 kJ1000 J=2.70 kJ

ΔHtotal=ΔH1+ΔH2+ΔH3+ΔH4+ΔH5=113.4 kJ

Step 3: Think about your result .

The total heat absorbed as the ice at -30°C is heated to steam at 140°C is 113.4 kJ. The largest absorption of heat comes during the vaporization of the liquid water.

Summary

  • Multi-step calculations for changes of state are described.

Practice

Questions

Watch the video below and answer the following questions:

http://www.youtube.com/watch?v=zz4KbvF_X-0

  1. What is the specific heat of ice?
  2. Why do you need the mass of ice?
  3. What happens if you leave out the energy for a phase change?

Review

Questions

  1. Why are two different sets of units used?
  2. What other units problem do you need to be aware of?
  3. What would you need to know to do calculations like this for acetone?

Image Attributions

  1. [1]^ Credit: Boiling water: Image copyright Steven Coling, 2014; Ice cubes: Image copyright Zoom Team, 2014; Source: http://www.shutterstock.com; License: CC BY-NC 3.0
  2. [2]^ Credit: CK-12 Foundation - Christopher Auyeung; Source: CK-12 Foundation; License: CC BY-NC 3.0

Description

Difficulty Level:

At Grade

Authors:

Grades:

Date Created:

May 01, 2013

Last Modified:

Jul 15, 2015
You can only attach files to Modality which belong to you
If you would like to associate files with this Modality, please make a copy first.

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
SCI.CHE.513.3.L.1

Original text