<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

17.5: Specific Heat Calculations

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated6 minsto complete
%
Progress
Practice Specific Heat Calculations
Practice
Progress
Estimated6 minsto complete
%
Practice Now

Water has a very high heat capacity, which makes it useful for radiators

Does water have a high capacity for absorbing heat?

Yes. In a car radiator, it serves to keep the engine cooler than it would otherwise run. (In the picture above, the radiator is the black object on the left.) As the water circulates through the engine, it absorbs heat from the engine block. When it passes through the radiator, the cooling fan and the exposure to the outside environment allow the water to cool somewhat before it makes another passage through the engine.

Specific Heat Calculations

The specific heat of a substance can be used to calculate the temperature change that a given substance will undergo when it is either heated or cooled. The equation that relates heat (q) to specific heat (cp), mass (m), and temperature change (ΔT) is shown below.

q=cp×m×ΔT

The heat that is either absorbed or released is measured in joules. The mass is measured in grams. The change in temperature is given by ΔT=TfTi, where Tf is the final temperature and Ti is the initial temperature.

Sample Problem: Calculating Specific Heat

A 15.0 g piece of cadmium metal absorbs 134 J of heat while rising from 24.0°C to 62.7°C. Calculate the specific heat of cadmium.

Step 1: List the known quantities and plan the problem.

Known

  • heat = q = 134 J
  • mass = m = 15.0 g
  • ΔT=62.7C24.0C=38.7C

Unknown

  • cp of cadmium=? J/gC

The specific heat equation can be rearranged to solve for the specific heat.

Step 2: Solve.

cp=qm×ΔT=134 J15.0 g×38.7C=0.231 J/gC

Step 3: Think about your result.

The specific heat of cadmium, a metal, is fairly close to the specific heats of other metals. The result has three significant figures.

Since most specific heats are known, they can be used to determine the final temperature attained by a substance when it is either heated or cooled. Suppose that a 60.0 g sample of water at 23.52°C was cooled by the removal of 813 J of heat. The change in temperature can be calculated using the specific heat equation.

ΔT=qcp×m=813 J4.18 J/gC×60.0 g=3.24C

Since the water was being cooled, the temperature decreases. The final temperature is:

Tf=23.52C3.24C=20.28C

Summary

  • Specific heat calculations are illustrated.

Practice

Work the problems at the link below:

http://www.sciencebugz.com/chemistry/chprbspheat.htm

Review

Questions

  1. Do different materials have different specific heats?
  2. How does mass affect heat absorbed?
  3. If we know the specific heat of a material, can we determine how much heat is released under a given set of circumstances?

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Authors:
Grades:
Date Created:
May 01, 2013
Last Modified:
May 26, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
SCI.CHE.511.7.L.1