# 6.13: Differences of Mixed Numbers with Renaming

Difficulty Level: At Grade Created by: CK-12
Estimated6 minsto complete
%
Progress
Practice Sums of Mixed Numbers with Renaming

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated6 minsto complete
%
Estimated6 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

### Let's Think About It

Terry is 614\begin{align*}6 \frac{1}{4}\end{align*} feet tall. Five years ago, she was 113\begin{align*}1\frac{1}{3}\end{align*} feet shorter. How tall was Terry five years ago?

In this concept, you will learn how to subtract mixed number by borrowing and renaming.

### Guidance

To rename a fraction means to take the fractions and write an equivalent fraction. Here is an example.

13=39\begin{align*}\frac{1}{3}=\frac{3}{9}\end{align*}

Sometimes when you subtract mixed numbers, you must rename the mixed numbers in a different way. Here is an example.

6456\begin{align*}& \qquad 6\\ & \underline{- \quad 4\frac{5}{6}\;}\end{align*}

To subtract a fraction from a whole number, rename the whole number to a mixed number. It is similar to borrowing when subtracting. Remember that 1 can be written as a fraction.

1=22 or 33 or 44. . .\begin{align*}1 = \frac {2}{2} \ \text{or} \ \frac {3}{3} \ \text{or} \ \frac {4}{4} \text{. . .}\end{align*}

Rename 6 into a mixed number. Borrow 1 from the whole number and rename it into a fraction with a denominator of 6.

6=566\begin{align*}6=5\frac{6}{6}\end{align*}

Now rewrite the problem with 6 as a mixed number.

566456\begin{align*}& \quad \ \ 5\frac{6}{6}\\ & \underline{- \quad 4\frac{5}{6}\;}\\ \end{align*}

Then, subtract the mixed numbers.

566456  116\begin{align*}& \quad \ \ 5\frac{6}{6}\\ & \underline{- \quad 4\frac{5}{6}\;}\\ & \quad \ \ 1\frac{1}{6}\end{align*}

The difference is 116\begin{align*}1\frac{1}{6}\end{align*}.

Sometimes you will also have to rename a mixed number if the fraction being subtracted is larger than the first fraction. Here is a subtraction problem with mixed numbers.

619349\begin{align*}& \quad \ \ 6\frac{1}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\end{align*}

This problem involves subtracting a larger fraction, four-ninths, from a smaller fraction, one-ninths. To make this work, rename the first mixed number by borrowing from the whole number. Remember to add the fraction to the renamed mixed number.

6599+19=599=5109\begin{align*}6 &= 5\frac{9}{9}\\ 5\frac{9}{9}+\frac{1}{9} &= 5\frac{10}{9}\end{align*}

Rewrite the problem with the new mixed number.

5109349\begin{align*}& \quad \ \ 5\frac{10}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\\ \end{align*}

Then, subtract the mixed numbers.

5109349  269\begin{align*}& \quad \ \ 5\frac{10}{9}\\ & \underline{- \quad 3\frac{4}{9}\;}\\ & \quad \ \ 2\frac{6}{9}\end{align*}

Next, simplify the fraction.

269=223\begin{align*}2\frac{6}{9}=2\frac{2}{3}\end{align*}

The difference is 223\begin{align*}2\frac{2}{3}\end{align*}.

### Guided Practice

Subtract the mixed numbers.

813234=\begin{align*}8\frac{1}{3} - 2\frac{3}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename the fractions so they they have a common denominator of 12.

84122912=716122912\begin{align*}8\frac{4}{12} - 2\frac{9}{12}= 7 \frac{16}{12} - 2 \frac{9}{12}\end{align*}

Then, rename 8412\begin{align*}8\frac{4}{12}\end{align*}. You cannot subtract 912\begin{align*}\frac{9}{12}\end{align*} from 412\begin{align*}\frac{4}{12}\end{align*}Borrow 1 from the whole number 8 and rename the mixed number.

8412=71212+412=71612\begin{align*}8 \frac{4}{12} = 7 \frac {12}{12} + \frac {4}{12}= 7 \frac{16}{12}\end{align*}

Next, rewrite the problem and subtract the mixed numbers.

716122912=5712\begin{align*} 7 \frac{16}{12} - 2 \frac{9}{12} = 5\frac{7}{12}\end{align*}

The difference is 5712\begin{align*}5\frac{7}{12}\end{align*}.

### Examples

Subtract the mixed numbers. Answer in simplest form.

#### Example 1

7215=\begin{align*}7-2\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename the whole number as a mixed number with a denominator of 5.

7=655\begin{align*}7 = 6 \frac{5}{5} \\ \end{align*}

7215=655215\begin{align*}7-2\frac{1}{5} = 6 \frac{5}{5}-2\frac{1}{5}\end{align*}

Then, subtract the mixed numbers.

655215=445\begin{align*}6 \frac{5}{5}-2\frac{1}{5} = 4\frac{4}{5}\end{align*}

The difference is 445\begin{align*}4 \frac{4}{5}\end{align*}.

#### Example 2

Rename 8 as an equivalent mixed number.

Borrow one from the whole number and rename it into a fraction.

8=788\begin{align*}8 = 7\frac{8}{8}\end{align*}

8 is equivalent to 788\begin{align*}7 \frac{8}{8}\end{align*}.

#### Example 3

914334=\begin{align*}9\frac{1}{4}-3\frac{3}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename 914\begin{align*}9 \frac{1}{4}\end{align*}. Borrow 1 from 9 and add it to the fraction.

914=854\begin{align*}9 \frac{1}{4} = 8\frac{5}{4}\end{align*}

914334=854334\begin{align*}9\frac{1}{4}-3\frac{3}{4}=8\frac{5}{4}-3\frac{3}{4}\end{align*}

Then, subtract the mixed numbers.

854334=524\begin{align*}8\frac{5}{4}-3\frac{3}{4}=5 \frac{2}{4}\end{align*}

Next, simplify the fraction.

524=512\begin{align*}5 \frac{2}{4}=5 \frac{1}{2}\end{align*}

The difference is 512\begin{align*}5 \frac{1}{2}\end{align*}.

### Follow Up

Remember Terry five years ago?

Terry is 614\begin{align*}6\frac{1}{4}\end{align*} feet tall, but was 113\begin{align*}1 \frac{1}{3}\end{align*} feet shorter five years ago. Subtract to find Terry's height five years ago.

614113=\begin{align*}6 \frac{1}{4} - 1 \frac{1}{3} = \underline{\;\;\;\;\;\;\;\;\;}\end{align*}

First, rename the fractions so they have a common denominator.

614113=63121412\begin{align*}6 \frac{1}{4} - 1 \frac{1}{3} =6 \frac{3}{12} - 1 \frac{4}{12}\end{align*}

Then, rename 6312\begin{align*}6 \frac{3}{12}\end{align*}. Borrow 1 from 6 and add it to the fraction.

6312=51512\begin{align*}6 \frac {3}{12} = 5 \frac {15}{12}\end{align*}

Next, subtract the mixed numbers.

515121412=41112\begin{align*}5 \frac{15}{12} - 1 \frac{4}{12} = 4 \frac{11}{12}\end{align*}

Five years ago, Terry was \begin{align*}4\frac{11}{12}\end{align*} feet tall.

### Explore More

Rename each whole number as a mixed number with a fraction terms of sixths.

1. 4

2. 5

3. 6

4. 10

5. 9

6. 12

Find each difference. Rename mixed numbers as needed. Answer in simplest form.

7. \begin{align*}3-2\frac{1}{4}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

8. \begin{align*}7-2\frac{2}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

9. \begin{align*}10-4\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

10. \begin{align*}8-2\frac{4}{9}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

11. \begin{align*}14-6\frac{2}{3}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

12. \begin{align*}15-6\frac{2}{10}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

13. \begin{align*}11-4\frac{1}{7}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

14. \begin{align*}18-16\frac{1}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

15. \begin{align*}20-15\frac{2}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

16. \begin{align*}7\frac{1}{6}-4\frac{3}{6}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

17. \begin{align*}9\frac{1}{5}-3\frac{4}{5}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

18. \begin{align*}10\frac{1}{8}-4\frac{3}{8}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

19. \begin{align*}15\frac{1}{9}-8\frac{4}{9}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

20. \begin{align*}17\frac{4}{7}-9\frac{6}{7}=\underline{\;\;\;\;\;\;\;\;\;}\end{align*}

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 6.13.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

### Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Authors:
Tags:
Subjects:

## Concept Nodes:

Grades:
Date Created:
Sep 24, 2015
Last Modified:
Sep 04, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original