<meta http-equiv="refresh" content="1; url=/nojavascript/"> Life Cycles of Stars | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Earth Science Concepts For High School Go to the latest version.

15.4: Life Cycles of Stars

Difficulty Level: At Grade Created by: CK-12
 0  0  0
%
Best Score
Practice Life Cycles of Stars
Practice
Best Score
%
Practice Now

What changes do stars undergo in their lifetimes?

Stars have a life cycle, just like people: they are born, grow, change over time, and eventually grow old and die. Most stars change in size, color, and class at least once in their lifetime. What astronomers know about the life cycles of stars is because of data gathered from visual, radio, and X-ray telescopes.

Star Formation

As discussed in "Concept The Solar System," stars are born in clouds of gas and dust called nebulas, like the one shown in Figure below .

For more on star formation, check out http://www.spacetelescope.org/science/formation_of_stars.html and http://hurricanes.nasa.gov/universe/science/stars.html .

The Pillars of Creation within the Eagle Nebula are where gas and dust come together as a stellar nursery.

The Main Sequence

For most of a star’s life, nuclear fusion in the core produces helium from hydrogen. A star in this stage is a main sequence star . This term comes from the Hertzsprung-Russell diagram shown above. For stars on the main sequence, temperature is directly related to brightness. A star is on the main sequence as long as it is able to balance the inward force of gravity with the outward force of nuclear fusion in its core. The more massive a star, the more it must burn hydrogen fuel to prevent gravitational collapse. Because they burn more fuel, more massive stars have higher temperatures. Massive stars also run out of hydrogen sooner than smaller stars do.

Our Sun has been a main sequence star for about 5 billion years and will continue on the main sequence for about 5 billion more years ( Figure below ). Very large stars may be on the main sequence for only 10 million years. Very small stars may last tens to hundreds of billions of years.

Our Sun is a medium-sized star in about the middle of its main sequence life.

The fate of the Sun and inner planets is explored in this video: http://www.space.com/common/media/video/player.php?videoRef=mm32_SunDeath .

Red Giants and White Dwarfs

As a star begins to use up its hydrogen, it fuses helium atoms together into heavier atoms such as carbon. A blue giant star has exhausted its hydrogen fuel and is in a transitional phase. When the light elements are mostly used up, the star can no longer resist gravity and starts to collapse inward. The outer layers of the star grow outward and cool. The larger, cooler star turns red in color and so is called a red giant .

Eventually, a red giant burns up all of the helium in its core. What happens next depends on how massive the star is. A typical star, such as the Sun, stops fusion completely. Gravitational collapse shrinks the star's core to a white, glowing object about the size of Earth, called a white dwarf ( Figure below ). A white dwarf will ultimately fade out.

Sirius, the brightest star in the sky, is actually a binary star system. Sirius A is on the main sequence. Sirius B, the tiny dot on the lower left, is a white dwarf.

Supergiants and Supernovas

A star that runs out of helium will end its life much more dramatically. When very massive stars leave the main sequence, they become red supergiants ( Figure below ).

The red star Betelgeuse in Orion is a red supergiant.

Unlike a red giant, when all the helium in a red supergiant is gone, fusion continues. Lighter atoms fuse into heavier atoms up to iron atoms. Creating elements heavier than iron through fusion uses more energy than it produces, so stars do not ordinarily form any heavier elements. When there are no more elements for the star to fuse, the core succumbs to gravity and collapses, creating a violent explosion called a supernova ( Figure below ). A supernova explosion contains so much energy that atoms can fuse together to produce heavier elements such as gold, silver, and uranium. A supernova can shine as brightly as an entire galaxy for a short time. All elements with an atomic number greater than that of lithium were formed by nuclear fusion in stars.

(a) NASA’s Chandra X-ray observatory captured the brightest stellar explosion so far, 100 times more energetic than a typical supernova. (b) This false-color image of the supernova remnant SN 1604 was observed as a supernova in the Milky Way galaxy. At its peak it was brighter than all other stars and planets, except Venus, in the night sky.

An animation of the Crab Supernova is seen here: http://www.youtube.com/watch?v=0J8srN24pSQ&feature=fvw .

Neutron Stars

After a supernova explosion, the leftover material in the core is extremely dense. If the core is less than about four times the mass of the Sun, the star becomes a neutron star ( Figure below ). A neutron star is more massive than the Sun, but only a few kilometers in diameter. A neutron star is made almost entirely of neutrons, relatively large particles that have no electrical charge.

After a supernova, the remaining core may end up as a neutron star.

Black Hole

If the core remaining after a supernova is more than about five times the mass of the Sun, the core collapses into a black hole . Black holes are so dense that not even light can escape their gravity. With no light, a black hole cannot be observed directly. But a black hole can be identified by the effect that it has on objects around it, and by radiation that leaks out around its edges.

How to make a black hole: http://www.space.com/common/media/video/player.php?videoRef=black_holes#playerTop .

A video about black holes is seen on Space.com: http://www.space.com/common/media/video/player.php?videoRef=black_holes .

A Star's Life Cycle video from Discovery Channel describes how stars are born, age and die (2f) : http://www.youtube.com/watch?v=H8Jz6FU5D1A (3:11).

A video of neutron stars is available at: http://www.youtube.com/watch?v=VMnLVkV_ovc (4:24).

Summary

  • Stars spend most of their lives on the main sequence, fusing hydrogen into helium for energy.
  • As stars burn up their hydrogen and fuse helium into larger atoms they begin to collapse and become red giants. When the helium is gone they become white dwarfs.
  • When a massive star has no more elements left to fuse it explodes as a supernova, from which the chemical elements heavier than lithium form.
  • An extremely massive core will collapse after a supernova explosion to become a black hole, which is black because no light can escape it.

Making Connections

Practice

Use this resource to answer the questions that follow.

http://www.odec.ca/projects/2002/wongj/public_html/animations.html

1. What is the birthplace of stars?

2. What is formed in the birthplace of stars?

3. Describe the main sequence star.

4. What causes a red giant to form?

5. Why does a red giant core collapse?

6. What does a red giant become?

7. What happens to a white dwarf?

8. What is the structure of high mass stars?

9. What happens as this star ages?

10. What do neon and magnesium fuse into?

11. How is an iron core produced?

12. What do high mass stars become?

Review

1. Why do some stars become red giants and others become supernovae?

2. Why are supernovae crucial to the evolution of the universe?

3. How does a star become a black hole? What are the characteristics of a black hole?

Vocabulary

black hole

black hole

The super dense core left after a supergiant explodes as a supernova.
main sequence star

main sequence star

A star that is fusing hydrogen atoms to helium; a star in the main portion of its life.
neutron star

neutron star

The remnant of a massive star after it explodes as a supernova.
red giant

red giant

Stage in a star's development when the inner helium core contracts while the outer layers of hydrogen expand.
supernova

supernova

A tremendous explosion that occurs when the core of a star is mostly iron.
white dwarf

white dwarf

A small to mid-sized star that has collapsed.

Image Attributions

Description

Difficulty Level:

At Grade

Grades:

Date Created:

Feb 24, 2012

Last Modified:

Aug 25, 2014
Files can only be attached to the latest version of Modality

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
SCI.ESC.941.4.L.1

Original text