<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 10.5: Determining Relative Ages

Difficulty Level: Basic Created by: CK-12
Estimated3 minsto complete
%
Progress
Practice Determining Relative Ages

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated3 minsto complete
%
Estimated3 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

What are the relative ages of these rocks?

This photo shows rock layers and a fault. (The fault is the large diagonal crack running through this rock.) These features can tell us several things about relative age. Unless the rock was turned over somehow, we can assume that the layers on top are younger than the layers on the bottom. Since the fault separates the layers, we can tell that the fault occurred after all the layers were deposited.

### Determining the Relative Ages of Rocks

Steno’s principles are essential for determining the relative ages of rocks and rock layers. Remember that in relative dating, scientists do not determine the exact age of a fossil or rock. They look at a sequence of rocks to try to decipher when an event occurred relative to the other events represented in that sequence. The relative age of a rock then is its age in comparison with other rocks. If you know the relative ages of two rock layers, (1) Do you know which is older and which is younger? (2) Do you know how old the layers are in years? For relative ages, you know #1 but not #2.

An interactive website on relative ages and geologic time is found here: http://www.ucmp.berkeley.edu/education/explorations/tours/geotime/gtpage1.html.

In some cases, it is very tricky to determine the sequence of events that leads to a certain formation. Can you figure out what happened in what order in (Figure below)? Write it down and then check the following paragraphs.

A geologic cross section: Sedimentary rocks (A-C), igneous intrusion (D), fault (E).

The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through. The fault cuts through all three sedimentary rock layers (A, B, and C) and also the intrusion (D). So the fault must be the youngest feature. The intrusion (D) cuts through the three sedimentary rock layers, so it must be younger than those layers. By the law of superposition, C is the oldest sedimentary rock, B is younger and A is still younger.

The full sequence of events is:

1. Layer C formed.
2. Layer B formed.
3. Layer A formed.
4. After layers A-B-C were present, intrusion D cut across all three.
5. Fault E formed, shifting rocks A through C and intrusion D.
6. Weathering and erosion created a layer of soil on top of layer A.

### Vocabulary

• relative age: The age of an object in comparison with the age of other objects.

### Summary

• The oldest rock units lie beneath the younger ones.
• By the principle of cross-cutting relationships (and common sense) we know that something must exist before something else can cut across it.
• The history of a section of rocks can be deciphered using the principles outlined in this Concept.

### Practice

Use this resource to answer the questions that follow.

1. What is relative dating?
2. What is the problem with relative dating?
3. Describe the law of supposition.
4. What is absolute dating?
5. Which type of dating gives you an exact date?

### Review

1. What is relative age? How does it differ from absolute age?
2. Why do the principles of relative dating not indicate the absolute age of a rock unit?
3. Under what circumstances would a rock unit with an older fossil be above a rock until with a younger fossil?

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

### Vocabulary Language: English

relative age

Age of an object in comparison with the age of other objects.

Show Hide Details
Description
Difficulty Level:
Basic
Authors:
Tags:
Subjects:

## Concept Nodes:

6 , 7
Date Created:
Jan 04, 2013