<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

14.3: Star Classification

Difficulty Level: Basic Created by: CK-12
Atoms Practice
Estimated3 minsto complete
Practice Star Classification
This indicates how strong in your memory this concept is
Estimated3 minsto complete
Estimated3 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Why are the stars in the Orion constellation different colors?

In this view of Orion you can see that the stars are different colors. The red star in the upper left is Betelgeuse (pronounced BET-ul-juice). The blue star in the lower right is Rigel. The fuzzy patch in the sword is the Orion nebula. The nebula will be discussed in the lesson on Star Formation.

Star Classification

With a quick look, stars look the same. Look closer though and you can see differences. The most obvious differences are in size and color.

Color and Temperature

Think about the coil of an electric stove as it heats up. The coil changes in color as its temperature rises. When you first turn on the heat, the coil looks black. The air a few inches above the coil begins to feel warm. As the coil gets hotter, it starts to glow a dull red. As it gets even hotter, it becomes a brighter red. Next it turns orange. If it gets extremely hot, it might look yellow-white, or even blue-white. Like a coil on a stove, a star’s color is determined by the temperature of the star’s surface. Relatively cool stars are red. Warmer stars are orange or yellow. Extremely hot stars are blue or blue-white.

Star temperatures are measured in degrees kelvin. The lowest temperature on the kelvin scale is absolute zero. That means molecules have no motion. Kelvin is related to Celsius and Fahrenheit in these ways:

[°C] = [K] − 273.15

[°F] = [K] × 9⁄5 − 459.67


A graph of the brightness (absolute magnitude) of stars versus their color (temperature) is shown in the Figure below. This is called Hertzsprung-Russell diagram.

The Hertzsprung-Russell diagram plots luminosity (absolute magnitude) against the colour of the stars ranging from the high-temperature blue-white stars on the left side of the diagram to the low temperature red stars on the right side.

Most stars fall along the main sequence curve. Stars in the main sequence fuse hydrogen into helium in the core. The horizontal branch also has many stars. These fuse helium in the core and burn hydrogen surrounding the core. Other stars are found in other regions.

Object Size

Relative sizes of stars of different masses.

This illustration in the Figure above shows the relative sizes of stars and their mass compared to the Sun. Red dwarfs are less massive and much smaller in size than the Sun. This means they have a very long lifetime. Our Sun is a fairly common type of star and has an average lifespan. Red Giants are what some main sequence stars (like our Sun) become near the end of their lives. They are much larger than our Sun. Supergiants are very massive stars and are larger than our Sun, but have a smaller radius than Red Giants. Supergiants have very short lifetimes.


  • Stars are classified by color, which correlates with temperature. Red stars are the coolest and blue are the hottest.
  • Stars are plotted on a Hertzsprung-Russell diagram.
  • Star temperatures are found in a continuum ranging from 2000 K to more than 30,000 K.
  • Kelvin is a temperature measure in which the lowest temperature is absolute zero.


Use this resource to answer the questions that follow.

Star Classification - Sixty Symbols at http://www.youtube.com/watch?v=R6_dZhE-4bk (7:57)

  1. What is the classification of our star?
  2. What number is assigned to the brightest stars?
  3. Who developed a better classification system?
  4. What is the current letter classification, in order from hottest to coldest?
  5. What determines the characteristics of a star?
  6. What identified on each axis of the Hertzsprung-Russell diagram?


  1. Why are stars different colors?
  2. Where do most stars fall on the Hertzsprung-Russel diagram? Why?
  3. Why do stars that are different colors appear in the same constellation?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


red dwarf A relatively cool small star.
red giant A relatively cool, large star.
supergiant An enormous star that is near the end of its life.

Image Attributions

Show Hide Details
Difficulty Level:
6 , 7
Date Created:
Jan 04, 2013
Last Modified:
Aug 29, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original