<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

9.3: Angles of Chords

Difficulty Level: At Grade Created by: CK-12
Turn In

Learning Objectives

  • Find the measures of angles formed by chords in a circle.

Chords

Chords are line segments whose endpoints are both on a circle. The figure below shows an arc ABˆ and its related chord AB¯¯¯¯¯¯¯¯.

  • A chord is a line segment whose ______________________ are both on a circle.

Angles Inside a Circle

The measure of the angle formed by two chords that intersect inside a circle is equal to half the sum of the measure of their intercepted arcs. In other words, the measure of the angle is the average (mean) of the measures of the intercepted arcs.

  • Two intersecting _______________________ make 4 angles in a circle. Each angle is the average of the corresponding intercepted arcs.
  • Another word for the average is the ______________________. The average of two numbers is half their sum.

In the figure above, ma=12(mABˆ+mDCˆ) and mb=12(mADˆ+mBCˆ)

Proof

Draw a segment to connect points B and C:

Statements Reasons
1. mDBC=12mDCˆ 1.Inscribed angle
2. mACB=12mABˆ 2.Inscribed angle
3. ma=mACB+mDBC 3. The measure of an exterior angle in a triangle is equal to the sum of the measures of the remote interior angles.
4. ma=12mDCˆ+12mABˆ 4. Substitution
5. ma=12(mDCˆ+mABˆ) 5. Factor and simplify

The intersection of two chords makes two pairs of vertical angles. Since vertical angles are congruent, you can compute the measure of either angle of each pair using the same calculation: take the average of the two intercepting arcs.

  • When two chords intersect in a circle, two pairs of _______________________ angles are created.
  • Each angle measure is equal to the ____________________________ of the two intercepting arc measures.
  • The reason in steps 1 and 2 in the proof above says that an __________________ angle is half of the measure of its intercepted arc.

Example 1

Find mDEC.

We know that an angle formed by two intersecting chords is the average of the intercepted arc measures.

For DEC, the intercepted arcs are DCˆ and ABˆ, but instead we are given the measures of the arcs ADˆ and BCˆ. We can use this information to find what we need:

mAEDmAED=12(mADˆ+mBCˆ) so mAED=12(40+62)=12(102)=51

Since AED and DEC are a linear pair (and thus supplementary):

mDECmDEC=180mAED=18051=129

Reading Check:

1. True or false: Chords that intersect inside a circle create 4 angles that all have different measures.

2. Why is the statement in question #1 true or why is it false? Defend your choice.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Description
Authors:
Grades:
8 , 9 , 10
Date Created:
Feb 23, 2012
Last Modified:
May 12, 2014
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
Here