<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

10.7: Study Guide

Difficulty Level: At Grade Created by: CK-12
Turn In

Keywords: Define, write theorems, and/or draw a diagram for each word below.

\begin{align*}1^{st}\end{align*} Section: Triangles and Parallelograms


Area of a Rectangle: \begin{align*}A = bh\end{align*}

Perimeter of a Rectangle \begin{align*}P = 2b + 2h\end{align*}

Perimeter of a Square: \begin{align*}P = 4s\end{align*}

Area of a Square: \begin{align*}A = s^2\end{align*}

Congruent Areas Postulate

Area Addition Postulate

Area of a Parallelogram: \begin{align*}A = bh\end{align*}

Area of a Triangle: \begin{align*}A = \frac{1}{2} \ bh\end{align*} or \begin{align*}A = \frac{bh}{2}\end{align*}


\begin{align*}2^{nd}\end{align*} Section: Trapezoids, Rhombi, and Kites

Area of a Trapezoid: \begin{align*}A = \frac{1}{2} h(b_1 + b_2)\end{align*}

Area of a Rhombus: \begin{align*}A = \frac{1}{2} d_1 d_2\end{align*}

Area of a Kite: \begin{align*}A = \frac{1}{2} d_1 d_2\end{align*}


\begin{align*}3^{rd}\end{align*} Section: Area of Similar Polygons

Area of Similar Polygons Theorem


\begin{align*}4^{th}\end{align*} Section: Circumference and Arc Length


Circumference: \begin{align*}C = \pi d\end{align*} or \begin{align*}C = 2 \pi r\end{align*}

Arc Length

Arc Length Formula: length of \begin{align*}\widehat{A B} = \frac{m \widehat{A B}}{360^\circ} \cdot \pi d\end{align*} or \begin{align*}\frac{m \widehat{A B}}{360^\circ} \cdot 2 \pi r\end{align*}


\begin{align*}5^{th}\end{align*} Section: Area of Circles and Sectors

Area of a Circle: \begin{align*}A = \pi r^2\end{align*}


Area of a Sector: \begin{align*}A = \frac{m \widehat{A B}}{360^\circ} \cdot \pi r^2\end{align*}

Segment of a Circle


Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original