<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

3.3: Corresponding Angles

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Corresponding Angles
Practice
Progress
Estimated5 minsto complete
%
Practice Now

What if you were presented with two angles that are in the same place with respect to the transversal but on different lines? How would you describe these angles and what could you conclude about their measures? After completing this Concept, you'll be able to answer these questions using your knowledge of corresponding angles.

Watch This

CK-12 Foundation: Chapter3CorrespondingAnglesA

Watch the portions of this video dealing with corresponding angles.

James Sousa: Angles and Transversals

Watch this video beginning at the 4:50 mark.

James Sousa: Corresponding Angles Postulate

James Sousa: Corresponding Angles Converse

Guidance

Corresponding Angles are two angles that are in the “same place” with respect to the transversal, but on different lines. Imagine sliding the four angles formed with line l down to line m. The angles which match up are corresponding. 2 and 6 are corresponding angles.

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

If l || m and both are cut by t, then 15, 26, 37, and 48.

Converse of Corresponding Angles Postulate: If corresponding angles are congruent when two lines are cut by a transversal, then the lines are parallel.

Investigation: Corresponding Angles Exploration

You will need: paper, ruler, protractor

  1. Place your ruler on the paper. On either side of the ruler, draw lines, 3 inches long. This is the easiest way to ensure that the lines are parallel.
  2. Remove the ruler and draw a transversal. Label the eight angles as shown.
  3. Using your protractor, measure all of the angles. What do you notice?

In this investigation, you should see that m1=m4=m5=m8 and m2=m3=m6=m7. 14, 58 by the Vertical Angles Theorem. By the Corresponding Angles Postulate, we can say 15 and therefore 18 by the Transitive Property.

Investigation: Creating Parallel Lines using Corresponding Angles
  1. Draw two intersecting lines. Make sure they are not perpendicular. Label them l and m, and the point of intersection, A, as shown.
  2. Create a point, B, on line m, above A.
  3. Copy the acute angle at A (the angle to the right of m) at point B. See Investigation 2-2 in Chapter 2 for the directions on how to copy an angle.
  4. Draw the line from the arc intersections to point B.

From this construction, we can see that the lines are parallel.

Example A

If m8=110 and m4=110, then what do we know about lines l and m?

8 and 4 are corresponding angles. Since m8=m4, we can conclude that l || m.

Example B

If m2=76, what is m6?

2 and 6 are corresponding angles and l || m, from the markings in the picture. By the Corresponding Angles Postulate the two angles are equal, so m6=76.

Example C

Using the picture above, list pairs of corresponding angles.

Corresponding Angles: 3 and 7, 1 and 5, 4 and 8

Watch this video for help with the Examples above.

CK-12 Foundation: Chapter3CorrespondingAnglesB

Vocabulary

Corresponding Angles are two angles that are in the “same place” with respect to the transversal, but on different lines.

Guided Practice

Lines l and m are parallel:

1. If 1=3x+1 and 5=4x3, solve for x.

2. If 2=5x+2 and 6=3x+10, solve for x.

3. If 7=5x+6 and 3=8x10, solve for x.

Answers:

1. Since they are corresponding angles and the lines are parallel, they must be congruent. Set the expressions equal to each other and solve for \begin{align*}x\end{align*}x. \begin{align*}3x+1=4x-3\end{align*}3x+1=4x3 so \begin{align*}x=4\end{align*}x=4.

2. Since they are corresponding angles and the lines are parallel, they must be congruent. Set the expressions equal to each other and solve for \begin{align*}x\end{align*}x. \begin{align*}5x+2=3x+10\end{align*}5x+2=3x+10 so \begin{align*}x=4\end{align*}x=4.

3. Since they are corresponding angles and the lines are parallel, they must be congruent. Set the expressions equal to each other and solve for \begin{align*}x\end{align*}x. \begin{align*}5x+5=8x-10\end{align*}5x+5=8x10 so \begin{align*}x=5\end{align*}x=5.

Practice

  1. Determine if the angle pair \begin{align*}\angle 4\end{align*}4 and \begin{align*}\angle 2\end{align*}2 is congruent, supplementary or neither:
  2. Give two examples of corresponding angles in the diagram:
  3. Find the value of \begin{align*}x\end{align*}x:
  4. Are the lines parallel? Why or why not?
  5. Are the lines parallel? Justify your answer.

For 6-10, what does the value of \begin{align*}x\end{align*}x have to be to make the lines parallel?

  1. If \begin{align*}m\angle 1 = (6x-5)^\circ\end{align*}m1=(6x5) and \begin{align*}m\angle 5 = (5x+7)^\circ\end{align*}m5=(5x+7).
  2. If \begin{align*}m\angle 2 = (3x-4)^\circ\end{align*}m2=(3x4) and \begin{align*}m\angle 6 = (4x-10)^\circ\end{align*}m6=(4x10).
  3. If \begin{align*}m\angle 3 = (7x-5)^\circ\end{align*}m3=(7x5) and \begin{align*}m\angle 7 = (5x+11)^\circ\end{align*}m7=(5x+11).
  4. If \begin{align*}m\angle 4 = (5x-5)^\circ\end{align*}m4=(5x5) and \begin{align*}m\angle 8 = (3x+15)^\circ\end{align*}m8=(3x+15).
  5. If \begin{align*}m\angle 2 = (2x+4)^\circ\end{align*}m2=(2x+4) and \begin{align*}m\angle 6 = (5x-2)^\circ\end{align*}m6=(5x2).

For questions 11-15, use the picture below.

  1. What is the corresponding angle to \begin{align*}\angle 4\end{align*}4?
  2. What is the corresponding angle to \begin{align*}\angle 1\end{align*}1?
  3. What is the corresponding angle to \begin{align*}\angle 2\end{align*}2?
  4. What is the corresponding angle to \begin{align*}\angle 3\end{align*}3?
  5. Are the two lines parallel? Explain.

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Vocabulary

Corresponding Angles

Corresponding angles are two angles that are in the same position with respect to the transversal, but on different lines.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Jul 17, 2012
Last Modified:
Feb 26, 2015
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.GEO.222.L.2
Here