# 12.7: Tessellations

**At Grade**Created by: CK-12

**Practice**Tessellations

What if you were given a hexagon and asked to tile it over a plane such that it would fill the plane with no overlaps and no gaps? Could you do this?

### Tessellations

You have probably seen tessellations before, even though you did not call them that. Examples of tessellations are: a tile floor, a brick or block wall, a checker or chess board, and a fabric pattern. A **tessellation** is a tiling over a plane with one or more figures such that the figures fill the plane with no overlaps and no gaps. Here are a few examples.

Notice the hexagon (cubes, first tessellation) and the quadrilaterals fit together perfectly. If we keep adding more, they will entirely cover the plane with no gaps or overlaps. The tessellation pattern could be colored creatively to make interesting and/or attractive patterns. To tessellate a shape it must be able to exactly surround a point, or the sum of the angles around each point in a tessellation must be

Tessellations can also be much more complicated. Here are a couple of examples.

#### Tessellating Quadrilaterals

Tessellate the quadrilateral below.

To tessellate any image you will need to reflect and rotate the image so that the sides all fit together. First, start by matching up each side with itself around the quadrilateral.

This is the final tessellation. You can continue to tessellate this shape forever.

Now, continue to fill in around the figures with either the original or the rotation.

#### Determining if an Object Tessellates

Does a regular pentagon tessellate?

First, recall that there are

#### Applying Knowledge about Tessellations

How many squares will fit around one point?

First, recall how many degrees are in a circle, and then figure out how many degrees are in each angle of a square. There are

#### Earlier Problem Revisited

You could tessellate a regular hexagon over a plane with no overlaps or gaps because each of its interior angles is

### Examples

#### Example 1

How many regular hexagons will fit around one point?

First, how many degrees are in a circle, and then figure out how many degrees are in each angle of a regular hexagon. There are

#### Example 2

Does a regular octagon tessellate?

First, recall that there are

### Review

Will the given shapes tessellate? If so, how many do you need to fit around a single point?

- A regular heptagon
- A rectangle
- A rhombus
- A parallelogram
- A trapezoid
- A kite
- A regular nonagon
- A regular decagon
- A completely irregular quadrilateral
- In general, which regular polygons will tessellate?
- Use equilateral triangles and regular hexagons to draw a tessellation.
- The blue shapes are regular octagons. Determine what type of polygon the white shapes are. Be as specific as you can.
- Draw a tessellation using regular hexagons.
- Draw a tessellation using octagons and squares.
- Make a tessellation of an irregular quadrilateral using the directions from Example A.

### Review (Answers)

To view the Review answers, open this PDF file and look for section 12.7.

### Notes/Highlights Having trouble? Report an issue.

Color | Highlighted Text | Notes | |
---|---|---|---|

Show More |

### Image Attributions

Here you'll learn what a tessellation is and how to tell whether or not a figure will tessellate.

## Concept Nodes:

**Save or share your relevant files like activites, homework and worksheet.**

To add resources, you must be the owner of the Modality. Click Customize to make your own copy.