# 3.9: Perpendicular Lines in the Coordinate Plane

Difficulty Level: At Grade Created by: CK-12
Estimated6 minsto complete
%
Progress
Practice Perpendicular Lines in the Coordinate Plane

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated6 minsto complete
%
Estimated6 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

### Perpendicular Lines in the Coordinate Plane

Recall that the definition of perpendicular is two lines that intersect at a , or right, angle. In the coordinate plane, that would look like this:

If we take a closer look at these two lines, we see that the slope of one is -4 and the other is . This can be generalized to any pair of perpendicular lines in the coordinate plane. The slopes of perpendicular lines are opposite signs and reciprocals of each other.

#### Calculating the Slope of Perpendicular Lines

Find the slope of the perpendicular lines to the lines below.

a)

, so  is the reciprocal and negative, .

b)

, take the reciprocal and make the slope positive,

c)

Because there is no number in front of , the slope is 1. The reciprocal of 1 is 1, so the only thing to do is make it negative, .

#### Finding the Equation of a Perpendicular Line

Find the equation of the line that is perpendicular to and passes through (9, -5).

First, the slope is the reciprocal and opposite sign of . So, . Now, we need to find the intercept. 4 is the intercept of the given line, not our new line. We need to plug in 9 for and -5 for to solve for the new intercept .

#### Graphing the Equation of a Line

Graph and . Determine if they are perpendicular.

First, we have to change each equation into slope-intercept form. In other words, we need to solve each equation for .

Now that the lines are in slope-intercept form (also called intercept form), we can tell they are perpendicular because their slopes are opposite reciprocals.

### Examples

#### Example 1

Determine which of the following pairs of lines are perpendicular.

• and
• and
• and

Two lines are perpendicular if their slopes are opposite reciprocals. The only pairs of lines this is true for is the first pair, because and are opposites and reciprocals.

#### Example 2

Find the equation of the line that is perpendicular to the line and goes through the point (2, -2).

The perpendicular line goes through (2, -2), but the slope is because we need to take the opposite reciprocal of .

The equation is .

#### Example 3

Give an example of a line that is perpendicular to the line .

3. Any line perpendicular to will have a slope of . Any equation of the form will work.

### Review

1. Determine which of the following pairs of lines are perpendicular.
1. and
2. and
3. and
4. and
5. and

Determine the equation of the line that is perpendicular to the given line, through the given point.

Determine if each pair of lines is perpendicular or not.

For the line and point below, find a perpendicular line, through the given point.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Difficulty Level:
Authors:
Tags:
Subjects: