<meta http-equiv="refresh" content="1; url=/nojavascript/">

# 5.3: Angle Bisectors in Triangles

Difficulty Level: At Grade Created by: CK-12
0%
Progress
Practice Angle Bisectors in Triangles
Progress
0%

What if the cities of Verticville, Triopolis, and Angletown were joining their city budgets together to build a centrally located airport? There are freeways between the three cities and they want to have the freeway on the interior of these freeways. Where is the best location to put the airport so that they have to build the least amount of road? In the picture below, the blue lines are the proposed roads. After completing this Concept, you'll be able to use angle bisectors to help answer this question.

### Guidance

Recall that an angle bisector cuts an angle exactly in half. Let’s analyze this figure.

BD\begin{align*}\overrightarrow{BD}\end{align*} is the angle bisector of ABC\begin{align*}\angle ABC\end{align*}. Looking at point D\begin{align*}D\end{align*}, if we were to draw ED¯¯¯¯¯\begin{align*}\overline{ED}\end{align*} and DF¯¯¯¯¯\begin{align*}\overline{DF}\end{align*}, we would find that they are equal. Recall that the shortest distance from a point to a line is the perpendicular length between them. ED\begin{align*}ED\end{align*} and DF\begin{align*}DF\end{align*} are the shortest lengths between D\begin{align*}D\end{align*}, which is on the angle bisector, and each side of the angle.

Angle Bisector Theorem: If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

In other words, if BD\begin{align*}\overleftrightarrow{BD}\end{align*} bisects ABC,BEED¯¯¯¯¯\begin{align*}\angle ABC, \overrightarrow{BE} \bot \overline{ED}\end{align*}, and BFDF¯¯¯¯¯\begin{align*}\overrightarrow{BF} \bot \overline{DF}\end{align*}, then ED=DF\begin{align*}ED = DF\end{align*}.

Proof of the Angle Bisector Theorem:

Given: BD\begin{align*}\overrightarrow{BD} \end{align*} bisects ABC,BAAD¯¯¯¯¯¯\begin{align*}\angle ABC, \overrightarrow{BA} \bot \overline{AD}\end{align*}, and BCDC¯¯¯¯¯\begin{align*}\overrightarrow{BC} \bot \overline{DC}\end{align*}

Prove: AD¯¯¯¯¯¯DC¯¯¯¯¯\begin{align*}\overline{AD} \cong \overline{DC}\end{align*}

Statement Reason
1. BD\begin{align*}\overrightarrow{BD}\end{align*} bisects ABC,BAAD¯¯¯¯¯¯,BCDC¯¯¯¯¯\begin{align*}\angle ABC, \overrightarrow{BA} \bot \overline{AD}, \overrightarrow{BC} \bot \overline{DC}\end{align*} Given
2. ABDDBC\begin{align*}\angle ABD \cong \angle DBC\end{align*} Definition of an angle bisector
3. DAB\begin{align*}\angle DAB\end{align*} and DCB\begin{align*}\angle DCB\end{align*} are right angles Definition of perpendicular lines
4. DABDCB\begin{align*}\angle DAB \cong \angle DCB\end{align*} All right angles are congruent
5. BD¯¯¯¯¯¯BD¯¯¯¯¯¯\begin{align*}\overline{BD} \cong \overline{BD}\end{align*} Reflexive PoC
6. ABDCBD\begin{align*}\triangle ABD \cong \triangle CBD\end{align*} AAS
7. AD¯¯¯¯¯¯DC¯¯¯¯¯\begin{align*}\overline{AD} \cong \overline{DC}\end{align*} CPCTC

The converse of this theorem is also true.

Angle Bisector Theorem Converse: If a point is in the interior of an angle and equidistant from the sides, then it lies on the bisector of the angle.

Because the Angle Bisector Theorem and its converse are both true we have a biconditional statement. We can put the two conditional statements together using if and only if. A point is on the angle bisector of an angle if and only if it is equidistant from the sides of the triangle. Like perpendicular bisectors, the point of concurrency for angle bisectors has interesting properties.

##### Investigation: Constructing Angle Bisectors in Triangles

Tools Needed: compass, ruler, pencil, paper

1. Draw a scalene triangle. Construct the angle bisector of each angle. Use Investigation 1-4 and #1 from the Review Queue to help you.

Incenter: The point of concurrency for the angle bisectors of a triangle.

2. Erase the arc marks and the angle bisectors after the incenter. Draw or construct the perpendicular lines to each side, through the incenter.

3. Erase the arc marks from #2 and the perpendicular lines beyond the sides of the triangle. Place the pointer of the compass on the incenter. Open the compass to intersect one of the three perpendicular lines drawn in #2. Draw a circle.

Notice that the circle touches all three sides of the triangle. We say that this circle is inscribed in the triangle because it touches all three sides. The incenter is on all three angle bisectors, so the incenter is equidistant from all three sides of the triangle.

Concurrency of Angle Bisectors Theorem: The angle bisectors of a triangle intersect in a point that is equidistant from the three sides of the triangle.

If AG¯¯¯¯¯,BG¯¯¯¯¯\begin{align*}\overline{AG}, \overline{BG}\end{align*}, and GC¯¯¯¯¯\begin{align*}\overline{GC}\end{align*} are the angle bisectors of the angles in the triangle, then EG=GF=GD\begin{align*}EG = GF = GD\end{align*}.

In other words, EG¯¯¯¯¯,FG¯¯¯¯¯\begin{align*}\overline{EG}, \overline{FG}\end{align*}, and DG¯¯¯¯¯¯\begin{align*}\overline{DG}\end{align*} are the radii of the inscribed circle.

#### Example A

Is Y\begin{align*}Y\end{align*} on the angle bisector of XWZ\begin{align*}\angle XWZ\end{align*}?

In order for Y\begin{align*}Y\end{align*} to be on the angle bisector XY\begin{align*}XY\end{align*} needs to be equal to YZ\begin{align*}YZ\end{align*} and they both need to be perpendicular to the sides of the angle. From the markings we know XY¯¯¯¯¯WX\begin{align*}\overline{XY} \bot \overrightarrow{WX}\end{align*} and ZY¯¯¯¯¯WZ\begin{align*}\overline{ZY} \bot \overrightarrow{WZ}\end{align*}. Second, XY=YZ=6\begin{align*}XY = YZ = 6\end{align*}. From this we can conclude that Y\begin{align*}Y\end{align*} is on the angle bisector.

#### Example B

If J,E\begin{align*}J, E\end{align*}, and G\begin{align*}G\end{align*} are midpoints and KA=AD=AH\begin{align*}KA = AD = AH\end{align*} what are points A\begin{align*}A\end{align*} and B\begin{align*}B\end{align*} called?

A\begin{align*}A\end{align*} is the incenter because KA=AD=AH\begin{align*}KA = AD = AH\end{align*}, which means that it is equidistant to the sides. B\begin{align*}B\end{align*} is the circumcenter because JB¯¯¯¯¯,BE¯¯¯¯¯\begin{align*}\overline{JB}, \overline{BE}\end{align*}, and BG¯¯¯¯¯\begin{align*}\overline{BG}\end{align*} are the perpendicular bisectors to the sides.

#### Example C

AB\begin{align*}\overrightarrow{AB}\end{align*} is the angle bisector of CAD\begin{align*}\angle CAD\end{align*}. Solve for the missing variable.

CB=BD\begin{align*}CB=BD\end{align*} by the Angle Bisector Theorem, so we can set up and solve an equation for x\begin{align*}x\end{align*}.

x+7x+715x=2(3x4)=6x8=5x=3

Watch this video for help with the Examples above.

#### Concept Problem Revisited

The airport needs to be equidistant to the three highways between the three cities. Therefore, the roads are all perpendicular to each side and congruent. The airport should be located at the incenter of the triangle.

### Guided Practice

1. Is there enough information to determine if AB\begin{align*}\overrightarrow{A B}\end{align*} is the angle bisector of CAD\begin{align*}\angle CAD\end{align*}? Why or why not?

2. MO\begin{align*}\overrightarrow{MO}\end{align*} is the angle bisector of LMN\begin{align*}\angle LMN\end{align*}. Find the measure of x\begin{align*}x\end{align*}.

3. A 100\begin{align*} 100^\circ\end{align*} angle is bisected. What are the measures of the resulting angles?

1. No because B\begin{align*}B\end{align*} is not necessarily equidistant from AC¯¯¯¯¯\begin{align*}\overline{AC}\end{align*} and AD¯¯¯¯¯¯\begin{align*}\overline{AD}\end{align*}. We do not know if the angles in the diagram are right angles.

2. LO=ON\begin{align*}LO = ON\end{align*} by the Angle Bisector Theorem.

4x54xx=23=28=7

3. We know that to bisect means to cut in half, so each of the resulting angles will be half of 100\begin{align*}100\end{align*}. The measure of each resulting angle is 50\begin{align*}50^\circ\end{align*}.

### Explore More

For questions 1-6, AB\begin{align*}\overrightarrow{AB}\end{align*} is the angle bisector of CAD\begin{align*}\angle CAD\end{align*}. Solve for the missing variable.

Is there enough information to determine if AB\begin{align*}\overrightarrow{AB}\end{align*} is the angle bisector of CAD\begin{align*}\angle CAD\end{align*}? Why or why not?

1. Fill in the blanks in the Angle Bisector Theorem Converse.

Given: AD¯¯¯¯¯¯DC¯¯¯¯¯\begin{align*}\overline{AD} \cong \overline{DC}\end{align*}, such that AD\begin{align*}AD\end{align*} and DC\begin{align*}DC\end{align*} are the shortest distances to BA\begin{align*}\overrightarrow{BA}\end{align*} and BC\begin{align*}\overrightarrow{BC}\end{align*}

Prove: BD\begin{align*}\overrightarrow{BD}\end{align*} bisects ABC\begin{align*}\angle ABC\end{align*}

Statement Reason
1.
2. The shortest distance from a point to a line is perpendicular.
3. DAB\begin{align*}\angle DAB\end{align*} and DCB\begin{align*}\angle DCB\end{align*} are right angles
4. DABDCB\begin{align*}\angle DAB \cong \angle DCB\end{align*}
5. BD¯¯¯¯¯¯BD¯¯¯¯¯¯\begin{align*}\overline{BD} \cong \overline{BD}\end{align*}
6. ABDCBD\begin{align*}\triangle ABD \cong \triangle CBD\end{align*}
7. CPCTC
8. BD\begin{align*}\overrightarrow{BD}\end{align*} bisects ABC\begin{align*}\angle ABC\end{align*}

Determine if the following descriptions refer to the incenter or circumcenter of the triangle.

1. A lighthouse on a triangular island is equidistant to the three coastlines.
2. A hospital is equidistant to three cities.
3. A circular walking path passes through three historical landmarks.
4. A circular walking path connects three other straight paths.

Multi- Step Problem

1. Draw ABC\begin{align*}\angle ABC\end{align*} through A(1,3),B(3,1)\begin{align*}A(1, 3), B(3, -1)\end{align*} and C(7,1)\begin{align*}C(7, 1)\end{align*}.
2. Use slopes to show that ABC\begin{align*}\angle ABC\end{align*} is a right angle.
3. Use the distance formula to find AB\begin{align*}AB\end{align*} and BC\begin{align*}BC\end{align*}.
4. Construct a line perpendicular to AB\begin{align*}AB\end{align*} through A\begin{align*}A\end{align*}.
5. Construct a line perpendicular to BC\begin{align*}BC\end{align*} through C\begin{align*}C\end{align*}.
6. These lines intersect in the interior of ABC\begin{align*}\angle ABC\end{align*}. Label this point D\begin{align*}D\end{align*} and draw BD\begin{align*}\overrightarrow{BD}\end{align*}.
7. Is BD\begin{align*}\overrightarrow{BD}\end{align*} the angle bisector of ABC\begin{align*}\angle ABC\end{align*}? Justify your answer.

### Vocabulary Language: English

Angle Bisector Theorem

Angle Bisector Theorem

The angle bisector theorem states that if a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.
Angle Bisector Theorem Converse

Angle Bisector Theorem Converse

The angle bisector theorem converse states that if a point is in the interior of an angle and equidistant from the sides, then it lies on the bisector of that angle.
incenter

incenter

The incenter is the point of intersection of the angle bisectors in a triangle.

## Date Created:

Jul 17, 2012

Mar 19, 2015
You can only attach files to Modality which belong to you
If you would like to associate files with this Modality, please make a copy first.

# Reviews

Help us create better content by rating and reviewing this modality.