# 10.7: Chapter 10 Review

Difficulty Level: At Grade Created by: CK-12

Keywords, Theorems and Formulas

• Perimeter
• Area of a Rectangle: \begin{align*}A=bh\end{align*}
• Perimeter of a Rectangle \begin{align*}P=2b+2h\end{align*}
• Perimeter of a Square: \begin{align*}P=4s\end{align*}
• Area of a Square: \begin{align*}A=s^2\end{align*}
• Congruent Areas Postulate
• Area Addition Postulate
• Area of a Parallelogram: \begin{align*}A=bh\end{align*}.
• Area of a Triangle: \begin{align*}A= \frac{1}{2} bh\end{align*} or \begin{align*}A=\frac{bh}{2}\end{align*}
• Area of a Trapezoid: \begin{align*}A=\frac{1}{2} h(b_1+b_2)\end{align*}
• Area of a Rhombus: \begin{align*}A=\frac{1}{2} d_1 d_2\end{align*}
• Area of a Kite: \begin{align*}A=\frac{1}{2} d_1 d_2\end{align*}
• Area of Similar Polygons Theorem
• \begin{align*}\pi\end{align*}
• Circumference: \begin{align*}C=\pi d\end{align*} or \begin{align*}C=2 \pi r\end{align*}
• Arc Length
• Arc Length Formula: length of \begin{align*}\widehat{AB}=\frac{m \widehat{AB}}{360^\circ} \cdot \pi d\end{align*} or \begin{align*}\frac{m \widehat{AB}}{360^\circ} \cdot 2 \pi r\end{align*}
• Area of a Circle: \begin{align*}A=\pi r^2\end{align*}
• Sector of a Circle
• Area of a Sector: \begin{align*}A=\frac{m \widehat{AB}}{360^\circ} \cdot \pi r^2\end{align*}
• Segment of a Circle
• Perimeter of a Regular Polygon: \begin{align*}P=ns\end{align*}
• Apothem
• Area of a Regular Polygon: \begin{align*}A=\frac{1}{2} asn\end{align*} or \begin{align*}A=\frac{1}{2} aP\end{align*}

## Review Questions

Find the area and perimeter of the following figures. Round your answers to the nearest hundredth.

1. square
2. rectangle
3. rhombus
4. regular pentagon
5. parallelogram
6. regular dodecagon

Find the area of the following figures. Leave your answers in simplest radical form.

1. triangle
2. kite
3. isosceles trapezoid
4. Find the area and circumference of a circle with radius 17.
5. Find the area and circumference of a circle with diameter 30.
6. Two similar rectangles have a scale factor \begin{align*}\frac{4}{3}\end{align*}. If the area of the larger rectangle is \begin{align*}96 \ units^2\end{align*}, find the area of the smaller rectangle.

Find the area of the following figures. Round your answers to the nearest hundredth.

1. find the shaded area (figure is a rhombus)

## Texas Instruments Resources

In the CK-12 Texas Instruments Geometry FlexBook, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9695.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Tags:
Subjects: